Resistance to temozolomide (TMZ) is the main cause of death in glioblastoma multiforme (GBM). The use of nanocarriers for drug delivery applications is one of the known approaches to overcome drug resistance. This study aimed to investigate the possible effect of selenium-chitosan nanoparticles loaded with TMZ on the efficacy of TMZ on the expression of MGMT, E2F6, and RELA genes and the rate of apoptosis in the C6 cell line. Selenium nanoparticles (SNPs) were loaded with TMZ and then they were coated by Eudragit RS100 (Eud) and chitosan (C) to prepare Se@TMZ/Eud-Cs. Physicochemical properties were determined by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDAX), thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) methods. Se@TMZ/Eud-Cs was evaluated for loading and release of TMZ by spectrophotometric method. Subsequently, SNPs loaded with curcumin (as a fluorophore) were analyzed for in vitro uptake by C6 cells. Cytotoxicity and apoptosis assay were measured by MTT assay and Annexin-PI methods. Finally, real-time PCR was utilized to determine the expression of MGMT, E2F6, and RELA genes. Se@TMZ/Eud-Cs was prepared with an average size of 200 nm as confirmed by the DLS and microscopical methods. Se@TMZ/Eud-Cs presented 82.77 ± 5.30 loading efficiency with slow and pH-sensitive release kinetics. SNPs loaded with curcumin showed a better uptake performance by C6 cells compared with free curcumin (-value < 0.01). Coated nanoparticles loaded with TMZ showed higher cytotoxicity, apoptosis (-value < 0.0001), and down-regulation of MGMT, E2F6, and RELA and lower IC50 value (-value < 0.0001) than free TMZ and control (-value < 0.0001) groups. Using Cs as a targeting agent in Se@TMZ/Eud-Cs system improved the possibility for targeted drug delivery to C6 cells. This drug delivery system enhanced the apoptosis rate and decreased the expression of genes related to TMZ resistance. In conclusion, Se@TMZ/Eud-Cs may be an option for the enhancement of TMZ efficiency in GBM treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308158PMC
http://dx.doi.org/10.3390/nano11071704DOI Listing

Publication Analysis

Top Keywords

cytotoxicity apoptosis
12
drug delivery
12
loaded tmz
12
mgmt e2f6
12
e2f6 rela
12
snps loaded
12
-value 00001
12
tmz
9
selenium nanoparticles
8
nanoparticles loaded
8

Similar Publications

Synthesis, Structural Modification, and Antismall Cell Lung Cancer Activity of 3-Arylisoquinolines with Dual Inhibitory Activity on Topoisomerase I and II.

J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.

To overcome the compensatory effect between Topo I and II, one of the reasons accounting for the resistance of SCLC patients, we are pioneering the use of 3-arylisoquinolines to develop dual inhibitors of Topo I/II for the management of SCLC. A total of 46 new compounds were synthesized. Compounds (IC = 1.

View Article and Find Full Text PDF

Background: Lung cancer is a highly aggressive tumor with limited therapeutic options. The misregulation of Androgen Receptor (AR) signaling has been observed in lung cancer. Therefore, inhibiting AR signaling is a promising strategy for treating lung cancer.

View Article and Find Full Text PDF

Lidocaine could promote the cuproptosis through up-regulating the long noncoding RNA DNMBP-AS1 in Hep-2 cells.

BMC Cancer

January 2025

Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, Dalian, 116011, Liaoning, China.

Background: Lidocaine is a traditional local anesthetic, which has been reported to trigger apoptosis through the mitochondrial pathway, independent of death receptor signaling. Cuproptosis is a copper triggered mitochondrial cell death mode. In this study, we explored the biological effects of lidocaine on cuproptosis in Hep-2 cells and studied the relevant mechanisms.

View Article and Find Full Text PDF

Mechanistic insights into pachymic acid's action on triple-negative breast Cancer through TOP2A targeting.

Sci Rep

January 2025

Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China.

Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen and progesterone receptors, and lack of human epidermal growth factor receptor 2 (HER2) expression. Traditional Chinese medicine (TCM) has demonstrated promising efficacy in treating TNBC. This study explored the mechanisms of pachymic acid (PA) on TNBC by merging network pharmacology with experimental validation.

View Article and Find Full Text PDF

Background: The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!