A motor core is formed by stacking iron sheets on top of each other. Traditionally, there are two stacking methods, riveting and welding, but these two methods will increase iron loss and reduce usage efficiency. The use of resin is the current developmental trend in the technology used to join iron sheets, which has advantages including lowering iron loss, smoothing magnetic circuits, and generating higher rigidity. The flow behavior of resin in gluing technology is very important because it affects the dipping of iron sheets and the stacking of iron sheets with resin. In this study, a set of analytical processes is proposed to predict the flow behavior of resin through the use of computer-aided engineering (CAE) tools. The research results are compared with the experimental results to verify the accuracy of the CAE tools in predicting resin flow. CAE tools can be used to predict results, modify modules for possible defects, and reduce the time and costs associated with experiments. The obtained simulation results showed that the filling trend was the same as that for the experimental results, where the error between the simulation results for the final dipping process and the target value was 0.6%. In addition, the position of air traps is also simulated in the dipping process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271971 | PMC |
http://dx.doi.org/10.3390/polym13132186 | DOI Listing |
Materials (Basel)
December 2024
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner Str. 5, 09599 Freiberg, Germany.
This study focuses on the effect of pre-deformation on hydrogen diffusion and hydrogen embrittlement of the high alloy austenitic TRIP steel X3CrMnNiMo17-8-4. Different cold-rolled steel sheets with thicknesses of ≤400 µm were electrochemically charged on both sides in 0.1 M sodium hydroxide with hydrogen for two weeks.
View Article and Find Full Text PDFGels
December 2024
School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China.
The concentration of small molecules reflects the normality of physiological processes in the human body, making the development of simple and efficient detection equipment essential. In this work, inspired by a facile strategy in point-of-care detection, two devices were fabricated to detect small molecules via photocurrent measurement. A linear response of the photocurrent against the concentration of the small molecules was found.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.
View Article and Find Full Text PDFHeliyon
November 2024
Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
The application of the amidohydrolase enzyme, L-asparaginase (ASNase), as a biocatalyst in the food and pharmaceutical industries has garnered significant interest. However, challenges such as hypersensitivity reactions, limited stability, and reusability under various operational conditions have hindered its cost-effective utilization. This paper introduces a novel nano-support for ASNase immobilization, namely the nanocomposite of iron oxide magnetic nanoparticles and amino acid-decorated graphene oxide (GO-Asp-FeO).
View Article and Find Full Text PDFMikrochim Acta
November 2024
The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
A composite material based on CuFe-ZIF-derived CuFeO nano-microspheres grown in situ and well-ordered on carbon sheets (CS) was prepared and applied for highly effective determination of bisphenol A (BPA). The composite material possessed inherently high redox activity due to the presence of both Cu and Fe ions with various oxidation states (Cu²⁺/Cu⁺ and Fe³⁺/Fe²⁺), high specific surface area, uniform distribution of Cu and Fe ions, and a robust framework imparted by its precursor CuFe-ZIF. This led to increased active sites for electrochemical reactions, improved electron transfer efficiency, and structural integrity during electrochemical cycling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!