The Effect of Vibration Mixing on the Mechanical Properties of Steel Fiber Concrete with Different Mix Ratios.

Materials (Basel)

School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China.

Published: June 2021

This work addresses how vibration stirring, steel-fiber volume ratio, and matrix strength affect the mechanical properties of steel-fiber-reinforced concrete. The goal of the work is to improve the homogeneity of steel-fiber-reinforced concrete, which is done by comparing the mechanical properties of steel-fiber-reinforced concrete fabricated by ordinary stirring with that fabricated by vibration stirring. The results show that the mechanical properties of steel-fiber-reinforced concrete produced by vibration mixing are better than those produced by ordinary mixing. The general trend is that the mechanical properties of steel-fiber concrete have a linear relationship with the matrix strength and the volume ratio of steel fiber. The best mechanical properties are obtained for a steel-fiber volume ratio of less than 1%. We have also established calculation models for the mechanical performance index of vibration, mixing steel-fiber concrete based on the test results. Microscopic studies show that vibration stirring optimizes the microstructure of the transition zone between the concrete interface and the slurry, and improves the homogeneity of the steel-fiber-reinforced concrete, and enhances the adhesion between the mixture components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269894PMC
http://dx.doi.org/10.3390/ma14133669DOI Listing

Publication Analysis

Top Keywords

mechanical properties
24
steel-fiber-reinforced concrete
20
vibration mixing
12
vibration stirring
12
volume ratio
12
properties steel-fiber-reinforced
12
concrete
9
steel fiber
8
steel-fiber volume
8
matrix strength
8

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.

View Article and Find Full Text PDF

Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.

Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!