Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries.

Molecules

Department of Food Science & Technology, College of Agricultural and Environmental Sciences, The University of Georgia, 100 Cedar Street, Athens, GA 30602, USA.

Published: June 2021

Two common extraction solvent systems, namely acidified aqueous methanol and acidified aqueous acetone, were used to extract blackberry phenolics, and the antioxidant properties of the recovered extracts were compared. The crude extracts were fractionated into low- and high-molecular-weight phenolics by Sephadex LH-20 column chromatography. The hydrophilic-oxygen radical absorbance capacity (H-ORAC), ferric reducing antioxidant power (FRAP), and the cellular antioxidant activity (CAA) assays were employed as indices to assess antioxidant capacity of the extracts and their respective fractions. The methanolic solvent system displayed a greater efficiency at extracting anthocyanin and flavonol constituents from the blackberries, while the acetonic solvent system was better at extracting flavan-3-ols and tannins. Anthocyanins were the dominant phenolic class found in the blackberries with 138.7 ± 9.8 mg C3G eq./100 g f.w. when using methanol as the extractant and 114.6 ± 3.4 mg C3G eq./100 g f.w. when using acetone. In terms of overall antioxidant capacity of blackberry phenolics, the acetonic solvent system was superior. Though present only as a small percentage of the total phenolics in each crude extract, the flavan-3-ols (42.37 ± 2.44 and 51.44 ± 3.15 mg/100 g f.w. in MLF and ALF, respectively) and ellagitannins (5.15 ± 0.78 and 9.31 ± 0.63 mg/100 g f.w. in MHF and AHF, respectively) appear to account for the differences in the observed antioxidant activity between the two solvent systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271949PMC
http://dx.doi.org/10.3390/molecules26134001DOI Listing

Publication Analysis

Top Keywords

solvent systems
12
solvent system
12
extraction solvent
8
acidified aqueous
8
blackberry phenolics
8
antioxidant activity
8
antioxidant capacity
8
acetonic solvent
8
c3g eq/100
8
solvent
6

Similar Publications

In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Chiral Nanostructures from Artificial Helical Polymers: Recent Advances in Synthesis, Regulation, and Functions.

ACS Nano

January 2025

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.

Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.

View Article and Find Full Text PDF

A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface.

View Article and Find Full Text PDF

Palladium-Catalyzed Solvent-Controlled Divergent C2/C5 Site-Selective Alkynylation of Pyrrole Derivatives.

J Org Chem

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.

Among the known aromatic -heterocycles, pyrroles are significant and versatile privileged components in pharmacologically relevant molecules. Herein, we demonstrate a protocol for the selective construction of alkynylated pyrroles in a diversity-oriented fashion through divergent C2/C5 site-selective alkynylation of pyrrole derivatives by employing a palladium catalyst with two different solvent systems. In the presence of 1,4-dioxane, the C2-alkynylation process via chelation-assisted palladation is favored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!