Preparation of Lignin-Based High-Ortho Thermoplastic Phenolic Resins and Fibers.

Molecules

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China.

Published: June 2021

Surplus lignin, which is inefficiently used, is generated in the forestry industry. Currently, most studies use lignin instead of phenol to synthesize thermosetting resins which cannot be reprocessed, thus affecting its application field. Thermoplastic phenolic resin has an orderly structure and excellent molding performance, which can greatly improve its application field and economic value. Herein, phenol was partially replaced with enzymolysis lignin (without treatment), generating lignin-based high-ortho thermoplastic phenolic resins (LPRs), and then lignin-based phenolic fibers (LPFs) were prepared by melt spinning. FTIR, C-NMR and GPC were used to characterize the ortho-para position ratio (O/P value), molecular weight and its distribution (PDI), and rheological properties of the resin. TG, XRD, SEM and tensile property studies were used to determine the thermal stability, orientation, and surface morphology of the fiber. Lignin addition resulted in the decline of the O/P value and molecular weight of the resin. For the 10% LPR, the O/P value, Mw, and PDI were 1.28, 4263, and 2.74, respectively, with the fiber exhibiting relatively good spinnability. The tensile strength and elongation at break of the 10% LPF were 160.9 MPa and 1.9%, respectively. The addition of lignin effectively improved the thermal properties of the fiber, and the carbon yields of 20% LPF before and after curing were 39.7% and 53.6%, respectively, which were 22.2% and 13.7% higher than that of the unmodified fiber, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271395PMC
http://dx.doi.org/10.3390/molecules26133993DOI Listing

Publication Analysis

Top Keywords

thermoplastic phenolic
12
lignin-based high-ortho
8
high-ortho thermoplastic
8
phenolic resins
8
application field
8
o/p molecular
8
molecular weight
8
lignin
5
preparation lignin-based
4
phenolic
4

Similar Publications

Interaction of preservatives with contact materials during filling and storage of parenteral liquid formulations.

Eur J Pharm Sci

January 2025

Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG 88400 Biberach, Germany.

Silicone tubing is a frequently used material in pharmaceutical filling processes for parenteral formulations, as its characteristics like flexibility, chemical resistance and easy handling make it particularly suitable for these purposes. This study investigated the time-dependent interaction of phenol and m-cresol with silicone tubing and other broadly applied contact materials used during the filling and transport processes of parenteral formulations. Phenol losses could be observed after incubation in silicone tubing, depending on the inner diameter (ID).

View Article and Find Full Text PDF

Silk fibroin (SF) is a natural protein generated from the silkworm cocoons. It is useful for many different material applications. Versatile aqueous process engineering options can be used to support the morphological and structural modifications of silk materials related to tailored physical, chemical, and biological properties.

View Article and Find Full Text PDF

Using tannin as a biological curing agent to design fully bio-based epoxidized natural rubber/polylactic thermoplastic vulcanizates with mechanical robustness and multi-stimuli-responsive shape memory properties.

Int J Biol Macromol

December 2024

School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China. Electronic address:

To effectively mitigate carbon emissions and promote sustainability in the polymer field, biological macromolecules have emerged as a prominent strategy for fabricating functional materials. Herein, tannin (TA) was used as a biological curing agent to design fully bio-based polylactic/epoxidized natural rubber thermoplastic vulcanizates (PLA/ENR TPVs) with mechanical robustness and multi-stimuli-responsive shape memory properties. A dual cross-linking network, comprising both covalent bonds and hydrogen bonds, was successfully constructed in the ENR phase.

View Article and Find Full Text PDF

Fiber-reinforced composites (FRCs) represent a promising class of engineering materials due to their mechanical performance. However, the vast majority of FRCs are currently manufactured using carbon and glass fibers, which raises concerns because of the difficulties in recycling and the reliance on finite fossil resources. On the other hand, the use of natural fibers is still hampered due to the problems such as, e.

View Article and Find Full Text PDF

In this work, the modification of poly(butylene adipate-co-terephthalate) (PBAT) was combined with the development of active packaging films. PBAT, starch, plasticizer, and tea polyphenols (TP) were compounded and extrusion-blown into thermoplastic starch (TPS)/PBAT-TP active films. Effects of TPS contents on physicochemical properties, functional activities, biodegradability, and release kinetics of PBAT-based active films were explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!