Laser powder bed fusion (LPBF) of Cu-0.5Cr was carried out using recycled powder taken out from the LPBF machine after previous printing. Various volumetric defects characterized the powder wherein particle size distribution was the same as virgin powder. Using recycled powder resulted in extra spherical pore formation after the LPBF process. Despite that, a relative density of 99.2% was achieved by LPBF parameters optimization. Solidified microstructure with a small volume of defects consisted of an oversaturated dendritic Cu matrix and nano-sized Cr precipitations providing strengthening mechanism occurrence. The possibility of a satisfactory level of mechanical properties with σ = 136.8 MPa, UTS = 187.4 MPa, along with 15.5% of elongation achieving, was shown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269624PMC
http://dx.doi.org/10.3390/ma14133644DOI Listing

Publication Analysis

Top Keywords

recycled powder
12
laser powder
8
powder bed
8
bed fusion
8
powder
6
fusion chromium
4
chromium bronze
4
bronze recycled
4
powder laser
4
lpbf
4

Similar Publications

Recovery of rare earths from end-of-life NdFeB permanent magnets from wind turbines.

ChemSusChem

January 2025

Spanish Scientific Research Council: Consejo Superior de Investigaciones Cientificas, Metalurgia Primaria y Reciclado de Materiales, SPAIN.

This work aims to recover rare earths from wind turbines NdFeB magnets through pyrometallurgical and hydrometallurgical techniques. First, a NdFeB hydride powder is obtained by decrepitation with hydrogen. Subsequently, this powder was subjected to a chlorination roasting process and successive leaching with water to bring the metals into solution.

View Article and Find Full Text PDF

Fluidized Electrochemical Exfoliation of Layered Transition Metal Dichalcogenides toward Fast Production of High-Quality Nanosheets in the Aqueous Phase.

Nano Lett

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

The transformation of bulk transition-metal dichalcogenide (TMD) particles into ultrathin nanosheets with both an acceptable yield and preserved crystalline integrity presents a substantial challenge in electrochemical exfoliation. This challenge arises from the continuous potential stress that the materials experience in traditional exfoliation setups. Herein, we propose a new fluidized electrochemical exfoliation (FEE) method to efficiently transform TMD powders into high-quality, few-layered TMD nanosheets in the aqueous phase.

View Article and Find Full Text PDF

Objective: To synthesize bilayer zirconia systems based on commercial or recycled 3Y-TZP obtained from non-milled remnants and to compare their optical and mechanical properties before and after aging.

Methods: Bilayer zirconia samples were fabricated using either recycled 3Y-TZP (3Y-R/4Y and 3Y-R/5Y) or commercial powders (3Y/4Y and 3Y/5Y). Microstructure and phase composition were analyzed using ScanningElectronMicroscopy (SEM) and X-Ray Diffraction (XRD).

View Article and Find Full Text PDF

Chlorinated paraffins (CPs) are chemical additives mostly composed of polychlorinated alkanes (PCAs) which may impact on the environment and human health; however, little is known about their presence in Southeast Asia. To fill this knowledge gap, we assessed 74 PCA homolog groups commonly referred to as short-chain (SCCPs: PCAs-C), medium-chain (MCCPs: PCAs-C), and long-chain CPs (LCCPs: PCAs-C) in technical CP mixtures (n = 4) and polymer samples (n = 49), including recycled plastics, collected in Vietnam in 2023. The contents of measured PCA homolog groups in technical CP mixtures were 86,000-930,000 mg/kg for PCAs-C; 85,000-990,000 mg/kg for PCAs-C; and 23,000-180,000 mg/kg for PCAs-C.

View Article and Find Full Text PDF

Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction.

J Am Chem Soc

January 2025

Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.

Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!