The surface pH is a critical factor in the quality and longevity of materials and products. Traditional fast colorimetric pH detection-based tests such as water quality control or pregnancy tests, when results are determined by the naked eye, cannot provide quantitative values. Using standard pH papers, paper-printed comparison charts, or colorimetric microfluidic paper-based analytical devices is not suitable for such technological applications and quality management systems (QMSs) where the particular tested material should contain a suitable indicator in situ, in its structure, either before or after the process, the technology or the apparatus that are being tested. This paper describes a method based on the combination of impregnation of a tested material with a pH indicator in situ, its exposure to a process of technology whose impact on pH value is to be tested, colorimetric pH measurement, and approximation of pH value using derived pH characteristic parameters (pH-CPs) based on CIE orthogonal and cylindrical color variables. The hypotheses were experimentally verified using the methyl red pH indicator, impregnating the acid lignin-containing paper, and preparing a calibration sample set with pH in the range 4 to 12 using controlled alkalization. Based on the performed measurements and statistical evaluation, it can be concluded that the best pH-CPs with the highest regression parameters for pH are ∆∆ and . The experimental results show that the presented method allows a good estimation of pH detection of the material surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234292 | PMC |
http://dx.doi.org/10.3390/molecules26123682 | DOI Listing |
J Mech Behav Biomed Mater
December 2024
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Innovation Platform (Centre) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, 710115, Xi'an, ShaanXi, China. Electronic address:
Polyether-ether-ketone (PEEK) composites represent one of the most promising approaches to overcoming the weak osseointegration associated with the bioinertness of PEEK, making them highly suitable for clinical translation. Implants with porous structures fabricated by additive manufacturing offer the potential for long-term stability by promoting bone ingrowth. However, despite the importance of porous design, there is still no consensus on the optimal approach for PEEK-based composites.
View Article and Find Full Text PDFNanophotonics
February 2024
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
Cylindrical vector beams (CVBs) hold considerable promise as high-capacity information carriers for multiplexing holography due to their mode orthogonality. In CVB holography, phase holograms are encoded onto the wave-front of CVBs with different mode orders while preserving their independence during reconstruction. However, a major challenge lies in the limited ability to manipulate the spatial phase and polarization distribution of CVBs independently.
View Article and Find Full Text PDFWaste Manag
December 2024
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China. Electronic address:
The escalating global issue of soil pollution by heavy metals, particularly incinerated municipal solid waste fly ash (IMSWFA), necessitates effective remediation strategies. The prevailing approach for safely disposing and utilization of IMSWFA involves high-temperature sintering. In this work, we propose a cost-effective method to produce ceramsites by utilizing IMSWFA, municipal sludge (MS), contaminated soil (CS), and iron tail slag (ITS).
View Article and Find Full Text PDFOphthalmic Physiol Opt
January 2025
Department of Materials, Design and Manufacturing Engineering, School of Engineering, University of Liverpool, Liverpool, UK.
Lab Chip
September 2024
ECLS Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
The ability to cost-effectively produce large surface area microfluidic devices would bring many small-scale technologies such as microfluidic artificial lungs (μALs) from the realm of research to clinical and commercial applications. However, efforts to scale up these devices, such as by stacking multiple flat μALs have been labor intensive and resulted in bulky devices. Here, we report an automated manufacturing system, and a series of cylindrical multi-layer lungs manufactured with the system and tested for fluidic fidelity and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!