Enhancing Kidney Vasculature in Tissue Engineering-Current Trends and Approaches: A Review.

Biomimetics (Basel)

Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA.

Published: June 2021

Chronic kidney diseases are a leading cause of fatalities around the world. As the most sought-after organ for transplantation, the kidney is of immense importance in the field of tissue engineering. The primary obstacle to the development of clinically relevant tissue engineered kidneys is precise vascularization due to the organ's large size and complexity. Current attempts at whole-kidney tissue engineering include the repopulation of decellularized kidney extracellular matrices or vascular corrosion casts, but these approaches do not eliminate the need for a donor organ. Stem cell-based approaches, such as kidney organoids vascularized in microphysiological systems, aim to construct a kidney without the need for organ donation. These organ-on-a-chip models show complex, functioning kidney structures, albeit at a small scale. Novel methodologies for developing engineered scaffolds will allow for improved differentiation of kidney stem cells and organoids into larger kidney grafts with clinical applications. While currently, kidney tissue engineering remains mostly limited to individual renal structures or small organoids, further developments in vascularization techniques, with technologies such as organoids in microfluidic systems, could potentially open doors for a large-scale growth of whole engineered kidneys for transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293130PMC
http://dx.doi.org/10.3390/biomimetics6020040DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
kidney
9
engineered kidneys
8
tissue
5
enhancing kidney
4
kidney vasculature
4
vasculature tissue
4
tissue engineering-current
4
engineering-current trends
4
trends approaches
4

Similar Publications

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

HIFU induces reprogramming of the tumor immune microenvironment in a pancreatic cancer mouse model.

Med Mol Morphol

January 2025

Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.

This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!