A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Separating the Wheat from the Chaff: The Use of Upstream Regulator Analysis to Identify True Differential Expression of Single Genes within Transcriptomic Datasets. | LitMetric

The development of DNA microarray and RNA-sequencing technology has led to an explosion in the generation of transcriptomic differential expression data under a wide range of biologic systems including those recapitulating the monogenic muscular dystrophies. Data generation has increased exponentially due in large part to new platforms, improved cost-effectiveness, and processing speed. However, reproducibility and thus reliability of data remain a central issue, particularly when resource constraints limit experiments to single replicates. This was observed firsthand in a recent rare disease drug repurposing project involving RNA-seq-based transcriptomic profiling of primary cerebrocortical cultures incubated with clinic-ready blood-brain penetrant drugs. Given the low validation rates obtained for single differential expression genes, alternative approaches to identify with greater confidence genes that were truly differentially expressed in our dataset were explored. Here we outline a method for differential expression data analysis in the context of drug repurposing for rare diseases that incorporates the statistical rigour of the multigene analysis to bring greater predictive power in assessing individual gene modulation. Ingenuity Pathway Analysis upstream regulator analysis was applied to the differentially expressed genes from the Care4Rare Neuron Drug Screen transcriptomic database to identify three distinct signaling networks each perturbed by a different drug and involving a central upstream modulating protein: levothyroxine (), hydroxyurea (), dexamethasone (). Differential expression of upstream regulator network related genes was next assessed in in vitro and in vivo systems by qPCR, revealing 5× and 10× increases in validation rates, respectively, when compared with our previous experience with individual genes in the dataset not associated with a network. The Ingenuity Pathway Analysis based gene prioritization may increase the predictive value of drug-gene interactions, especially in the context of assessing single-gene modulation in single-replicate experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231191PMC
http://dx.doi.org/10.3390/ijms22126295DOI Listing

Publication Analysis

Top Keywords

differential expression
20
upstream regulator
12
regulator analysis
8
expression data
8
drug repurposing
8
validation rates
8
differentially expressed
8
ingenuity pathway
8
pathway analysis
8
analysis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!