Download full-text PDF

Source

Publication Analysis

Top Keywords

[loss capacity
4
capacity lymphocytes
4
lymphocytes divide
4
divide peripheral
4
peripheral blood
4
blood cultures
4
cultures metastasis
4
metastasis breast
4
breast cancer]
4
[loss
1

Similar Publications

Proteomic patterns associated with ketamine response in major depressive disorders.

Cell Biol Toxicol

January 2025

Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.

Background: Major depressive disorder (MDD) is characterized by persistent feelings of sadness and loss of interest. Ketamine has been widely used to treat MDD owing to its rapid effect in relieving depressive symptoms. Importantly, not all patients respond to ketamine treatment.

View Article and Find Full Text PDF

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

Policy complexity suppresses dopamine responses.

J Neurosci

January 2025

Department of Physiology, Anatomy and Genetics, University of Oxford.

Limits on information processing capacity impose limits on task performance. We show that male and female mice achieve performance on a perceptual decision task that is near-optimal given their capacity limits, as measured by policy complexity (the mutual information between states and actions). This behavioral profile could be achieved by reinforcement learning with a penalty on high complexity policies, realized through modulation of dopaminergic learning signals.

View Article and Find Full Text PDF

Beyond the Hayflick Limit: How Microbes Influence Cellular Aging.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran. Electronic address:

Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Association of lung function with visceral adiposity and skeletal muscle mass considering myosteatosis.

Chest

January 2025

Subdivision of Endocrinology and Metabolism, Health Screening and Promotion Center, Asan Medical Center, Seoul, Republic of Korea. Electronic address:

Background: Changes in body composition, including loss of muscle mass and obesity, adversely affect lung function.

Research Question: What is the relationship between lung function, visceral adiposity, and skeletal muscle mass, considering myosteatosis measured using computed tomography (CT) scans in middle-aged Korean adults?

Study Design And Methods: We reviewed 15,827 participants (9237 men and 6590 women), with a mean age of 52.5 ± 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!