Development of a 3-DOF Flexible Micro-Motion Platform Based on a New Compound Lever Amplification Mechanism.

Micromachines (Basel)

Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China.

Published: June 2021

In this paper, a flexible micro-operation platform with three degrees of freedom, large stroke, and high precision is designed to meet the higher demands in the fields of biological engineering and medicine. The platform adopts a compound lever mechanism. The theoretical magnification of the mechanism is 9.627, the simulation magnification is 10.111, and the error is 5.02%. The platform uses a piezoelectric ceramic driver to increase the output stroke to obtain a larger movement space. The composite lever mechanism and new micro-operating platform are studied by theoretical calculation and finite element simulation. The results show that the new flexible micro-operating platform based on the composite lever mechanism has good motion decoupling and high precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231144PMC
http://dx.doi.org/10.3390/mi12060686DOI Listing

Publication Analysis

Top Keywords

lever mechanism
12
platform based
8
compound lever
8
high precision
8
composite lever
8
micro-operating platform
8
platform
6
mechanism
5
development 3-dof
4
3-dof flexible
4

Similar Publications

Introduction: Physical activity interventions in deprived communities should acknowledge the social, political, and cultural context in which they are delivered. Targeted young leaders programs can harness positive youth development principles and address these concerns by engaging underrepresented young people and developing them as physical activity leaders who can support local delivery efforts. Community-based Youth Leadership development programs are under-researched, and little is known about how to develop young people from deprived communities as physical activity leaders.

View Article and Find Full Text PDF

Self-induced optical non-reciprocity.

Light Sci Appl

January 2025

CAS Key Laboratory of Quantum Information & CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.

Non-reciprocal optical components are indispensable in optical applications, and their realization without any magnetic field has attracted increasing research interest in photonics. Exciting experimental progress has been achieved by either introducing spatial-temporal modulation of the optical medium or combining Kerr-type optical nonlinearity with spatial asymmetry in photonic structures. However, extra driving fields are required for the first approach, while the isolation of noise and the transmission of the signal cannot be simultaneously achieved for the other approach.

View Article and Find Full Text PDF

Escalation of intravenous fentanyl self-administration and assessment of withdrawal behavior in male and female mice.

Psychopharmacology (Berl)

December 2024

Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA.

Rationale: The rise in overdose deaths from synthetic opioids, especially fentanyl, necessitates the development of preclinical models to study fentanyl use disorder (FUD). While there has been progress with rodent models, additional translationally relevant models are needed to examine excessive fentanyl intake and withdrawal signs.

Objective: The current study aimed to develop a translationally relevant preclinical mouse model of FUD by employing chronic intravenous fentanyl self-administration (IVSA).

View Article and Find Full Text PDF

Analysing the support mechanisms of the vaginal ring pessary on supine and upright MRI.

Sci Rep

December 2024

Multi-Modality Medical Imaging (M3I), TechMed Centre, University of Twente, Technohal 2384,Drienerolaan 5, Enschede, 7522NB, The Netherlands.

Vaginal pessaries have been used for millennia to alleviate symptoms of pelvic organ prolapse (POP). Despite their long-standing use, the success rate of pessary treatment is approximately 60%, and the underlying mechanisms of support are not well understood. This study aims to investigate three previously proposed hypotheses regarding the support mechanisms of pessaries, utilizing supine and upright magnetic resonance imaging (MRI): (1) support by bony structures, (2) support by levator ani muscles (LAM), and (3) the uterus keeping the pessary in place by acting as a lever.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chronic hepatitis B virus (HBV) infection is still a widespread global health issue. HuaganJiedu Decoction (HGJDD) is a common prescription for treating HBV in China, which has the effect of enhancing antiviral efficacy and improving clinical efficacy. However, its precise mechanism of action remains unclear, warranting further investigation to elucidate its therapeutic potential and integration into standard medical practices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!