A set of 207 isolates were collected from ten autonomous communities from Spain in 2019 to 2020 from pigs with meningitis, pneumonic lungs, arthritic joints or other swollen viscera, to a lesser extent. Thirteen capsular types were detected being the most prevalent serotype 2 (21.7%), followed by serotypes 1 (21.3%), 9 (19.3%) and 3 (6.3%). Serotypes 2 and 9 were recovered mainly from the central nervous system (CNS), while serotype 1 was isolated mostly from swollen joints and serotype 3 from the lungs. Twenty-five isolates (12.1%) could not be typed. The most prevalent pathotype was + + + (49 isolates, 23.8%), and it was related mainly to serotypes 1 and 2. Serotypes 1-3 and 9 were significantly associated with anatomical sites of isolation and virulence factors, serotype 9 (CNS) and serotypes 3 and 9 (lungs) being associated with virulence profiles without the gene. isolates showed globally high antimicrobial resistances, but ampicillin followed by spectinomycin and tiamulin resulted in the highest activities, while the greatest resistances were detected for sulphadimethoxine, tetracyclines, neomycin, clindamycin and macrolides. A total of 87.4% isolates were positive to the gene, 62.4% to the gene and 25.2% to the gene, while 14.6% were positive to all three genes simultaneously. A significative association between isolate resistances to tetracyclines and macrolides and the resistance genes tested was established, except for phenicol resistance and the gene. A set of 14 multiresistance patterns were obtained according to the number of antimicrobials to which the isolates were resistant, the resistances to 12 or more agents being the most prevalent ones. A remarkable amount of multiresistance profiles could be seen among the serotype 9 isolates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230935PMC
http://dx.doi.org/10.3390/antibiotics10060707DOI Listing

Publication Analysis

Top Keywords

resistance genes
8
isolates
8
gene
6
serotype
5
serotypes
5
anatomical site
4
site typing
4
typing virulence
4
virulence gene
4
gene profiling
4

Similar Publications

Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.

View Article and Find Full Text PDF

DNA methyltransferase and poly (ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon genes (STING)-dependent pathogen mimicry response (PMR) in ovarian and other cancers. Here, we showed that combining DNMTis and PARPis upregulates expression of the nucleic-acid sensor NFX1-type zinc finger-containing 1 protein (ZNFX1). ZNFX1 mediated induction of PMR in mitochondria, serving as a gateway for STING-dependent interferon/inflammasome signaling.

View Article and Find Full Text PDF

We present the genome of BDSA isolated from ready-to-eat (RTE) meat collected in Dhaka, Bangladesh. The genome displays the Listeria pathogenicity island 1 and virulence, stress response, and antimicrobial resistance genes. It was phylogenetically classified as ST7, and clustered with serotype 1/2a belonging to lineage II.

View Article and Find Full Text PDF

The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells.

View Article and Find Full Text PDF

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!