Active microcalcification of elastic fibers is a hallmark of pseudoxanthoma elasticum and it can be measured with the assessment of deposition of 18F-NaF using a PET/CT scan at the skin and vascular levels. It is not known whether this deposition changes over time in absence of specific therapy. We repeated in two years a PET/CT scan using 18F-NaF as a radiopharmaceutical in patients with the disease and compared the deposition at skin and vessel. Furthermore, calcium score values at the vessel wall were also assessed. Main results indicate in the vessel walls that calcification progressed in each patient; by contrast, the active microcalcification, measured and target-to-background ratio showed reduced active deposition. By contrast, at skin levels (neck and axillae) the uptake of the pharmaceutical remains unchanged. In conclusion, because calcification in the arterial wall is not specific for pseudoxanthoma elasticum condition, the measurement of the deposition of 18F-NaF in the neck might be potentially used as a surrogate marker in future trials for the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230828PMC
http://dx.doi.org/10.3390/jcm10122588DOI Listing

Publication Analysis

Top Keywords

pseudoxanthoma elasticum
12
18f-naf pet/ct
8
active microcalcification
8
deposition 18f-naf
8
pet/ct scan
8
deposition
5
cutaneous vascular
4
vascular deposits
4
18f-naf
4
deposits 18f-naf
4

Similar Publications

A diagnosis of age-related macular degeneration (AMD) may have a significant impact on a patient's life. Therefore, it is important to consider differential diagnoses, as these can differ considerably from AMD regarding prognosis, inheritance, monitoring and therapy. Differential diagnoses include other macular diseases with drusen, drusen-like changes, monogenic retinal dystrophies, as well as a wide range of other, often rare macular diseases.

View Article and Find Full Text PDF

Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.

View Article and Find Full Text PDF

Background: Pseudoxanthoma elasticum (PXE) is characterized by aberrant calcification of elastic tissues throughout the body causing varying degrees of skin, cardiac, and ocular disease. Although PXE is classically regarded as an autosomal recessive disease, recent reports have demonstrated a haploinsufficiency phenotype, in which carriers of monoallelic ATP-binding cassette transporter () gene mutations demonstrate mild manifestations of PXE. In this case report, we describe a patient with a monoallelic mutation and atypical angioid streaks.

View Article and Find Full Text PDF

Background/aim: Pseudoxanthoma elasticum (PXE) is a genetic connective tissue disorder that affects the skin with limited treatment options. A recent technology employing particle-free polycaprolactone (PCL) has shown promising results in treating inner thighs and kness of a 27-year-old female patient. This article provides a case report along with our detailed treatment protocol based on the efficacy of PCL in reversing skin laxity that can be easily incorporated into the therapeutic approaches for patients with PXE.

View Article and Find Full Text PDF

Pseudoxanthoma elasticum-like papillary dermal elastolysis; A report of two cases and a literature review.

Dermatol Online J

October 2024

Division of Dermatology, Department of Medicine, School of Medicine, The University of Jordan, Amman, Jordan.

Pseudoxanthoma elasticum-like papillary dermal elastolysis is a rare, benign, acquired, gradually-developing chronic elastic tissue disorder that almost exclusively affects post-menopausal women. It is essential to recognize this disease as it mimics the inherited pseudoxanthoma clinically. The pathophysiology behind this disease is multifactorial; it includes intrinsic skin aging, ultraviolet radiation exposure, and genetic components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!