Evaluation of the Physicochemical Properties of Chitosans in Inducing the Defense Response of against the Fungus .

Polymers (Basel)

Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico.

Published: June 2021

Chitosan is a natural polymer, and its biological properties depend on factors such as the degree of deacetylation and polymerization, viscosity, molecular mass, and dissociation constant. Chitosan has multiple advantages: it is biodegradable, biocompatible, safe, inexpensive, and non-toxic. Due to these characteristics, it has a wide range of applications. In agriculture, one of the most promising properties of chitosan is as an elicitor in plant defense against pathogenic microorganisms. In this work, four kinds of chitosan (practical grade, low molecular weight, medium molecular weight, and high-density commercial food grade) were used in concentrations of 0.01 and 0.05% to evaluate its protective effect against coffee rust. The best treatment was chosen to evaluate the defense response in coffee plants. The results showed a protective effect using practical-grade and commercial food-grade chitosan. In addition, the activity of enzymes with β-1,3 glucanase and peroxidase was induced, and an increase in the amount of phenolic compounds was observed in plants treated with high-molecular-weight chitosan at 0.05%; therefore, chitosan can be considered an effective molecule for controlling coffee rust.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230575PMC
http://dx.doi.org/10.3390/polym13121940DOI Listing

Publication Analysis

Top Keywords

defense response
8
molecular weight
8
coffee rust
8
chitosan
7
evaluation physicochemical
4
physicochemical properties
4
properties chitosans
4
chitosans inducing
4
inducing defense
4
response fungus
4

Similar Publications

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.

Mycorrhiza

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Autophagy is an essential cellular process which functions to maintain homeostasis in response to stressors such as starvation or infection. Here, we report that a subset of autophagy factors including ATG-3 play an antiviral role in Orsay virus infection of . Orsay virus infection does not modulate autophagic flux, and re-feeding after starvation limits Orsay virus infection and blocks autophagic flux, suggesting that the role of ATG-3 in Orsay virus susceptibility is independent of its role in maintaining autophagic flux.

View Article and Find Full Text PDF

Public health alarm concerning the emerging fungus is fueled by its antifungal drug resistance and propensity to cause deadly outbreaks. Persistent skin colonization drives transmission and lethal sepsis although its basis remains mysterious. We compared the skin colonization dynamics of with its relative , quantifying skin fungal persistence and distribution and immune composition and positioning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!