Supramolecular helices that arise from the self-assembly of small organic molecules via non-covalent interactions play an important role in the structure and properties of the corresponding materials. Here we study the supramolecular helical aggregation of oligo(phenyleneethynylene) monomers from a theoretical point of view, always guiding the studies with experimentally available data. In this way, by systematically increasing the number of monomer units, optimized n-mer geometries are obtained along with the corresponding absorption and circular dichroism spectra. For the geometry optimizations we use density functional theory together with the B3LYP-D3 functional and the 6-31G** basis set. For obtaining the spectra we resort to time-dependent density functional theory using the CAM-B3LYP functional and the 3-21G basis set. These combinations of density functional and basis set were selected after systematic convergence studies. The theoretical results are analyzed and compared to the experimentally available spectra, observing a good agreement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228480 | PMC |
http://dx.doi.org/10.3390/molecules26123530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!