Modeling Stratum Corneum Swelling for the Optimization of Electrode-Based Skin Hydration Sensors.

Sensors (Basel)

Institute of Computational Physics, School of Engineering, Zurich University of Applied Sciences, ZHAW, 8400 Winterthur, Switzerland.

Published: June 2021

AI Article Synopsis

  • A new computational model simulates human skin to study how dielectric spectroscopy electrodes can measure the hydration levels in the stratum corneum, the outer layer of skin.
  • The model accounts for changes in skin thickness and dielectric properties as hydration levels vary, revealing that different thicknesses can affect measurements.
  • Researchers found that while both conductance and capacitance electrodes react to changes in geometric design, conductance electrodes are more sensitive to dimension changes, suggesting a need for optimizing electrode design for better hydration monitoring.

Article Abstract

We present a novel computational model of the human skin designed to investigate dielectric spectroscopy electrodes for stratum corneum hydration monitoring. The multilayer skin model allows for the swelling of the stratum corneum, as well as the variations of the dielectric properties under several hydration levels. According to the results, the stratum corneum thickness variations should not be neglected. For high hydration levels, swelling reduces the skin capacitance in comparison to a fixed stratum corneum thickness model. In addition, different fringing-field electrodes are evaluated in terms of sensitivity to the stratum corneum hydration level. As expected, both conductance and capacitance types of electrodes are influenced by the electrode geometry and dimension. However, the sensitivity of the conductance electrodes is more affected by dimension changes than the capacitance electrode leading to potential design optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229638PMC
http://dx.doi.org/10.3390/s21123986DOI Listing

Publication Analysis

Top Keywords

stratum corneum
24
corneum hydration
8
hydration levels
8
corneum thickness
8
corneum
6
hydration
5
stratum
5
modeling stratum
4
corneum swelling
4
swelling optimization
4

Similar Publications

Biocompatible Lyotropic Nanocarriers for Improved Delivery of Ascorbyl Tetraisopalmitate in Skincare.

Langmuir

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.

Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.

View Article and Find Full Text PDF

Evaluation of the Effectiveness of Using LED Light Combined With Chromophore Gel in Treating Acne Vulgaris - Preliminary Study.

Clin Cosmet Investig Dermatol

January 2025

Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland.

Purpose: The aim was to quantitatively evaluate the effectiveness of LED light therapy combined with photoacceptor substances having anti-acne properties in reducing the symptoms of acne vulgaris.

Patients And Methods: 15 subjects aged 20 to 24 who suffered from moderate or severe acne lesions. The treatments were performed using a LED device (465-880 nm).

View Article and Find Full Text PDF

Research Progress of Microneedles in Vaccine Delivery.

Curr Med Chem

January 2025

Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China.

Large-scale infectious diseases have become a significant threat to human health and safety. The successful invention of vaccines is the most powerful means for preventing infectious diseases and has greatly improved global human health. Even during the pandemic of COVID-19, which has affected the world, vaccines have played an irreplaceable role.

View Article and Find Full Text PDF

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!