Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tumor regrowth and heterogeneity are important clinical parameters during radiotherapy, and the probability of treatment benefit critically depends on the tumor progression pattern in the interval between the fractional irradiation treatments. We propose an analytic, easy-to-use method to take into account clonal subpopulations with different specific growth rates and radiation resistances. The different strain regrowth effects, as described by Gompertz law, require a dose-boost to reproduce the survival probability of the corresponding homogeneous system and for uniform irradiation. However, the estimate of the survival fraction for a tumor with a hypoxic subpopulation is more reliable when there is a slow specific regrowth rate and when the dependence on the oxygen enhancement ratio of radiotherapy is consistently taken into account. The approach is discussed for non-linear two-population dynamics for breast cancer and can be easily generalized to a larger number of components and different tumor phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229245 | PMC |
http://dx.doi.org/10.3390/jpm11060527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!