Oncolytic Herpes Simplex Virus-Based Therapies for Cancer.

Cells

Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11451, Saudi Arabia.

Published: June 2021

With the increased worldwide burden of cancer, including aggressive and resistant cancers, oncolytic virotherapy has emerged as a viable therapeutic option. Oncolytic herpes simplex virus (oHSV) can be genetically engineered to target cancer cells while sparing normal cells. This leads to the direct killing of cancer cells and the activation of the host immunity to recognize and attack the tumor. Different variants of oHSV have been developed to optimize its antitumor effects. In this review, we discuss the development of oHSV, its antitumor mechanism of action and the clinical trials that have employed oHSV variants to treat different types of tumor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235327PMC
http://dx.doi.org/10.3390/cells10061541DOI Listing

Publication Analysis

Top Keywords

oncolytic herpes
8
herpes simplex
8
cancer cells
8
simplex virus-based
4
virus-based therapies
4
cancer
4
therapies cancer
4
cancer increased
4
increased worldwide
4
worldwide burden
4

Similar Publications

Introduction: Oncolytic herpes simplex viruses (oHSVs) are a type of biotherapeutic utilized in cancer therapy due to their ability to selectively infect and destroy tumor cells without harming healthy cells. We sought to investigate the functional genomic response and altered metabolic pathways of human cancer cells to oHSV-1 infection and to elucidate the influence of these responses on the relationship between the virus and the cancer cells.

Methods: Two datasets containing gene expression profiles of tumor cells infected with oHSV-1 (G207) and non-infected cells from the Gene Expression Omnibus (GEO) database were processed and normalized using the R software.

View Article and Find Full Text PDF

Engineered allogeneic stem cells orchestrate T lymphocyte driven immunotherapy in immunosuppressive leptomeningeal brain metastasis.

J Natl Cancer Inst

January 2025

Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, Massachusetts, USA.

Background: Immune-checkpoint inhibitors have shown clinical benefit in non-small cell lung cancer (NSCLC) derived brain metastasis (BM), however, their efficacy in lung to leptomeningeal brain metastasis (LLBM) remains poor.

Methods: A paired matched RNA expression dataset of patients with NSCLCs and BMs was analyzed to idenfiy BM specific suppressive tumor microenvironment (TME) features. Next, we created immune-competent LLBM mouse models that mimic clinical LLBM.

View Article and Find Full Text PDF

Background: Intratumoral oncolytic herpes simplex virus 2-GM CSF (OH2) injection has shown safety and antitumor efficacy in patients with solid tumors. Here, we examined the safety and efficacy of OH2 as a single agent or in combination with HX008, an NMPA-approved PD-1 inhibitor, in locally advanced or metastatic sarcoma patients.

Methods: This multicenter, phase 1/2 trial enrolled patients with injectable sarcoma lesions, who had failed at least 1 or more lines of standard treatment.

View Article and Find Full Text PDF

Background And Aims: Melanoma now presents an average risk of 1 in 50 in the Western world. Talimogene laherparepvec (T-VEC), an FDAapproved oncolytic virus derived from Herpes Simplex Virus type 1 (HSV-1), has proven effective in reducing morbidity and mortality from melanoma but causes adverse effects like chills, fever, exhaustion, and injection site discomfort. Research focuses on combining T-VEC with immune checkpoint inhibitors, such as pembrolizumab, to enhance its efficacy and broaden its application.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!