AI Article Synopsis

  • Piplartine is a natural alkaloid with potential anti-inflammatory properties that has not been previously studied in the context of sepsis.
  • The study explores the effects of piplartine on various macrophage types and a sepsis model, finding that it significantly reduces inflammatory markers and cellular activation related to sepsis.
  • The results suggest that piplartine could be beneficial in treating sepsis by lessening inflammation, tissue damage, and improving survival rates.

Article Abstract

Piplartine (or Piperlongumine) is a natural alkaloid isolated from L., which has been proposed to exhibit various biological properties such as anti-inflammatory effects; however, the effect of piplartine on sepsis has not been examined. This study was performed to examine the anti-inflammatory activities of piplartine in vitro, ex vivo and in vivo using murine J774A.1 macrophage cell line, peritoneal macrophages, bone marrow-derived macrophages and an animal sepsis model. The results demonstrated that piplartine suppresses iNOS and COX-2 expression, reduces PGE, TNF-α and IL-6 production, decreases the phosphorylation of MAPKs and NF-κB and attenuates NF-κB activity by LPS-activated macrophages. Piplartine also inhibits IL-1β production and suppresses NLRP3 inflammasome activation by LPS/ATP- and LPS/nigericin-activated macrophages. Moreover, piplartine reduces the production of nitric oxide (NO) and TNF-α, IL-6 and IL-1β, decreases LPS-induced tissue damage, attenuates infiltration of inflammatory cells and enhances the survival rate. Collectively, these results demonstrate piplartine exhibits anti-inflammatory activities in LPS-induced inflammation and sepsis and suggest that piplartine might have benefits for sepsis treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234963PMC
http://dx.doi.org/10.3390/ph14060588DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
8
inflammasome activation
8
piplartine
8
anti-inflammatory activities
8
tnf-α il-6
8
macrophages piplartine
8
sepsis
5
protective piplartine
4
piplartine lps-induced
4
lps-induced sepsis
4

Similar Publications

Porcine epidemic diarrhea virus (PEDV) induces enteritis and diarrhea in piglets. Mitochondrial DNA (mtDNA) contributes to virus-induced inflammatory responses; however, the involvement of inflammasomes in PEDV infection responses remains unclear. We investigated the mechanism underlying inflammasome-mediated interleukin (IL)-1β secretion during the PEDV infection of porcine intestinal epithelial (IPEC-J2) cells.

View Article and Find Full Text PDF

Uric acid (UA), a metabolite of purine and fructose metabolism, is linked to inflammation and metabolic disorders, including gout and cardiovascular disease. Its pro-inflammatory effects are largely driven by the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to increased cytokine production. Beta-hydroxybutyrate (BHB), a ketone produced during fasting or carbohydrate restriction, has been shown to reduce inflammation.

View Article and Find Full Text PDF

Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology.

Curr Issues Mol Biol

December 2024

Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland.

Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes.

View Article and Find Full Text PDF

The NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome is a well-known and frequently cited regulator of caspase-1 activation. It plays a significant role in several pathophysiological processes and is a major regulator of the innate immune response. A growing amount of scientific evidences for its aberrant activation in various chronic inflammatory diseases attracts a growing interest in the development of new NLRP3 inhibitors.

View Article and Find Full Text PDF

Therapeutic targeting of neuroinflammation in methamphetamine use disorder.

Future Med Chem

December 2024

Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.

Methamphetamine (METH) is a highly addictive illicit psychostimulant with a significant annual fatality rate. Emerging studies highlight its role in neuroinflammation and a range of neurological disorders. This review examines the current landscape of potential drug targets for managing neuroinflammation in METH use disorders (MUDs), with a particular focus on the rationale behind targeting Toll-like receptor 4 (TLR4), the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and other promising targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!