The aim of this proof-of-concept study was to evaluate the in vitro effects of ozonated water treatment on the viability of oocysts and cysts isolated from naturally infected water buffaloes. oocysts were divided into seven groups of six replicates that were treated with ozonated water at three ozone concentrations (0.5, 1, and 2 mg/L) and two contact times (five and ten minutes), and one group (negative control) that was exposed to non-treated water. cysts were divided into nine groups of six replicates and were treated with ozonated water at four ozone concentrations (0.1, 0.3, 0.5, and 1 mg/L) and two contact times (one and two minutes), while one group (negative control) was exposed to non-treated water. The results of the ozonated water treatment gave a 33% inhibition of the sporulation of oocysts and rendered 96.3% of cysts non-viable, suggesting that ozonated water treatment could be a promising alternative sanitation technology to common conventional disinfectants for reducing intestinal protozoa infections in water buffaloes; though further in vitro and in vivo tests are needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233707PMC
http://dx.doi.org/10.3390/vetsci8060115DOI Listing

Publication Analysis

Top Keywords

ozonated water
24
water treatment
16
water buffaloes
12
water
11
treatment viability
8
viability oocysts
8
oocysts cysts
8
proof-of-concept study
8
divided groups
8
groups replicates
8

Similar Publications

Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.

View Article and Find Full Text PDF

Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts.

View Article and Find Full Text PDF

Hydroxyl (OH) is the atmosphere's main oxidant removing most pollutants including methane. Its short lifetime prevents large-scale direct observational quantification. Abundances inferred using anthropogenic trace gas measurements and models yield conflicting trend estimates.

View Article and Find Full Text PDF

Micro-polluted surface waters (MPSWs) draw increased concern for environmental protection. However, traditional treatment methods such as activated sludge, ozone activated carbon, and membrane filtration suffer from high cost and susceptibility to secondary pollution and are rarely used to address MPSWs. Herein, a new stepped combined constructed wetland planted with without additional inputs was developed.

View Article and Find Full Text PDF

Development and application of decontamination methods for the re-use of laboratory grade plastic pipette tips.

PLoS One

December 2024

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America.

During the SARS-CoV-2 pandemic, a need for methods to decontaminate and reuse personal protective equipment (PPE) and medical plastics became a priority. In this investigation we aimed to develop a contamination evaluation protocol for laboratory pipette tips, after decontamination. Decontamination methods tested in this study included cleaning with a common laboratory detergent (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!