A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

No-Reference Quality Assessment for 3D Synthesized Images Based on Visual-Entropy-Guided Multi-Layer Features Analysis. | LitMetric

Multiview video plus depth is one of the mainstream representations of 3D scenes in emerging free viewpoint video, which generates virtual 3D synthesized images through a depth-image-based-rendering (DIBR) technique. However, the inaccuracy of depth maps and imperfect DIBR techniques result in different geometric distortions that seriously deteriorate the users' visual perception. An effective 3D synthesized image quality assessment (IQA) metric can simulate human visual perception and determine the application feasibility of the synthesized content. In this paper, a no-reference IQA metric based on visual-entropy-guided multi-layer features analysis for 3D synthesized images is proposed. According to the energy entropy, the geometric distortions are divided into two visual attention layers, namely, bottom-up layer and top-down layer. The feature of salient distortion is measured by regional proportion plus transition threshold on a bottom-up layer. In parallel, the key distribution regions of insignificant geometric distortion are extracted by a relative total variation model, and the features of these distortions are measured by the interaction of decentralized attention and concentrated attention on top-down layers. By integrating the features of both bottom-up and top-down layers, a more visually perceptive quality evaluation model is built. Experimental results show that the proposed method is superior to the state-of-the-art in assessing the quality of 3D synthesized images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233917PMC
http://dx.doi.org/10.3390/e23060770DOI Listing

Publication Analysis

Top Keywords

synthesized images
16
quality assessment
8
based visual-entropy-guided
8
visual-entropy-guided multi-layer
8
multi-layer features
8
features analysis
8
geometric distortions
8
visual perception
8
iqa metric
8
bottom-up layer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!