The novelty of the research involves designing the measurement methodology aimed at determining the structure-property relationships in the chitosan-based hydrogels containing yellow tea extract. Performed investigations allowed us to determine the swelling properties of hydrogels in selected time intervals, evaluate the mutual interactions between the hydrogels and simulated physiological liquids via pH measurements and directly assess the impact of such interactions on the chemical structure of hydrogels using Fourier transform infrared (FT-IR) spectroscopy and their wettability by the measurements of the flatness of the drop on the surface of the tested samples via the static drop method. Next, the surface morphology of hydrogels was characterized by the Scanning Electron Miscorcopy (SEM) and their elasticity under the tension applied was also verified. It was proved that incubation in simulated physiological liquids resulted in a decrease in contact angles of hydrogels, even by 60%. This also caused their certain degradation which was reflected in lower intensities of bands on FT-IR spectra. Further, 23% yellow tea extract in hydrogel matrices caused the decrease of their tensile strength. An increase in the amount of the crosslinker resulted in a decrease in the sorption capacity of hydrogels wherein their modification caused greater swelling ability. In general, the investigations performed provided much information on the tested materials which may be meaningful considering their application, e.g., as dressing materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235593 | PMC |
http://dx.doi.org/10.3390/ma14123379 | DOI Listing |
Int J Mol Sci
December 2024
Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China.
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels.
View Article and Find Full Text PDFChem Sci
December 2024
National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
Developing dithienylethene (DTE)-based fluorescence switches triggered by biocompatible visible light has always been a long-term goal in view of their potential in numerous biological scenarios. However, their practical availability is severely limited by the short visible light (generally less than 500 nm) required for photocyclization, their inability to achieve red or near-infrared emission, and their short fluorescence lifetimes. Herein, we present a novel DTE derivative featuring a dimethylamine-functionalized BF-curcuminoid moiety (NBDC) by using an "acceptor synergistic conjugation system" strategy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India. Electronic address:
A simple, tailor-made, novel chemosensor based on 1,10-phenanthroline Schiff base incorporating N, N-Diethylamino salicylaldehyde (1) was designed and synthesized. The sensing ability of chemosensor 1 was tested via colorimetric, UV-Vis and fluorescence spectroscopy. Chemosensor 1 could effectively and specifically detect diethylchlorophosphate (DCP) in acetonitrile displaying naked eye colour change from pale yellow to dark yellow while fluorogenic colour changes from blue to pink fluorescence (365 nm UV lamp irradiation).
View Article and Find Full Text PDFFood Chem X
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
The levels of flavor compounds and hazardous compounds are important indicators for evaluating high-temperature roasted food. In this paper, the effect of tea pre-marination on non-volatile compounds, volatile compounds, and hazardous compounds in roasted chicken. The results showed that the total content of key umami non-volatile compounds in roasted chicken marinated with green tea, white tea, and black tea increased by 17.
View Article and Find Full Text PDFPlant Dis
December 2024
South Shaoshan Road 498#Changsha, China, 410004;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!