The design and manufacture of artificial tissue for knee joints have been highlighted recently among researchers which necessitates an apt approach for its assessment. Even though most re-searches have focused on specific mechanical or tribological tests, other aspects have remained underexplored. In this review, elemental keys for design and testing artificial cartilage are dis-cussed and advanced methods addressed. Articular cartilage structure, its compositions in load-bearing and tribological properties of hydrogels, mechanical properties, test approaches and wear mechanisms are discussed. Bilayer hydrogels as a niche in tissue artificialization are presented, and recent gaps are assessed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234542 | PMC |
http://dx.doi.org/10.3390/polym13122000 | DOI Listing |
Medicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFAnn Vasc Surg
January 2025
Department of Vascular Surgery, First Hospital of Tsinghua University, Beijing, China. Electronic address:
Background: Adjacent bony structures may directly rub the carotid artery during swallowing or head and/neck movement. Long-term repeated stimulation might be considered to be a potential risk factor for carotid atherosclerotic plaque formation, development, and hazard. we defined the process as "Osteal Kneading".
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
Three-dimensional printing was introduced in the 1980s, though bioprinting started developing a few years later. Today, 3D bioprinting is making inroads in medical fields, including the production of biomedical supplies intended for internal use, such as biodegradable staples. Medical bioprinting enables versatility and flexibility on demand and is able to modify and individualize production using several established printing methods.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
Background: Osteoarthritis (OA), characterized by progressive degeneration of cartilage and reactive proliferation of subchondral bone, stands as a prevalent condition in orthopedic clinics. However, the precise mechanisms underlying OA pathogenesis remain inadequately explored.
Methods: In this study, Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning techniques were employed to identify hub genes.
J Vet Intern Med
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
Background: Clinical characteristics of cervical hydrated nucleus pulposus extrusion (HNPE) in dogs compared to other causes of cervical myelopathy are not well described.
Hypothesis/objectives: To evaluate for clinical characteristics and mechanical ventilation likelihood associated with HNPE compared to other causes of cervical myelopathy.
Animals: Three hundred seventy-seven client-owned dogs from 2010 to 2022.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!