Static mechanical compression is a biomechanical factor that affects the progression of melanoma cells. However, little is known about how dynamic mechanical compression affects the progression of melanoma cells. In the present study, we show that mechanical intermittent compression affects the progression rate of malignant melanoma cells in a cycle period-dependent manner. Our results suggest that intermittent compression with a cycle of 2 h on/2 h off could suppress the progression rate of melanoma cells by suppressing the elongation of F-actin filaments and mRNA expression levels related to collagen degradation. In contrast, intermittent compression with a cycle of 4 h on/4 h off could promote the progression rate of melanoma cells by promoting cell proliferation and mRNA expression levels related to collagen degradation. Mechanical intermittent compression could therefore affect the progression rate of malignant melanoma cells in a cycle period-dependent manner. Our results contribute to a deeper understanding of the physiological responses of melanoma cells to dynamic mechanical compression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234529 | PMC |
http://dx.doi.org/10.3390/diagnostics11061112 | DOI Listing |
ChemMedChem
January 2025
Kobe Pharmaceutical University: Kobe Yakka Daigaku, Laboratory of Microbial Chemistry, 4-19-1 Motoyamakita, Higashinada, 6588558, Kobe, JAPAN.
The antiausterity strategy in anticancer drug discovery has attracted much attention as a way to exterminate cancer cells under nutrient deprived conditions which are commonly found in solid tumors. These tumors under low nutrient stress are known to be malignant and often resist conventional drug therapy. As a potential drug candidate, we focused on the meroterpenoid natural product callistrilone O which has demonstrated extremely potent antiausterity properties toward PANC-1 pancreatic carcinoma in vitro.
View Article and Find Full Text PDFOncoimmunology
December 2025
Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8 T cells and NK cells and can generate durable responses in a subset of patients.
View Article and Find Full Text PDFNat Commun
January 2025
Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands.
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.
View Article and Find Full Text PDFJ Microbiol Biotechnol
January 2025
Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.
is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!