Methylglyoxal-Derived Advanced Glycation End Product (AGE4)-Induced Apoptosis Leads to Mitochondrial Dysfunction and Endoplasmic Reticulum Stress through the RAGE/JNK Pathway in Kidney Cells.

Int J Mol Sci

Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Gu, Seoul 02841, Korea.

Published: June 2021

Advanced glycation end products (AGEs) are formed via nonenzymatic reactions between reducing sugars and proteins. Recent studies have shown that methylglyoxal, a potent precursor for AGEs, causes a variety of biological dysfunctions, including diabetes, inflammation, renal failure, and cancer. However, little is known about the function of methylglyoxal-derived AGEs (AGE4) in kidney cells. Therefore, we verified the expression of endoplasmic reticulum (ER) stress-related genes and apoptosis markers to determine the effects of AGE4 on human proximal epithelial cells (HK-2). Moreover, our results showed that AGE4 induced the expression of apoptosis markers, such as Bax, p53, and kidney injury molecule-1, but downregulated Bcl-2 and cyclin D1 levels. AGE4 also promoted the expression of NF-κB, serving as a transcription factor, and the phosphorylation of c-Jun NH-terminal kinase (JNK), which induced cell apoptosis and ER stress mediated by the JNK inhibitor. Furthermore, AGE4 induced mitochondrial dysfunction by inducing the permeabilization of the mitochondrial membrane and ATP synthesis. Through in vitro and in vivo experiments, this study provides a new perspective on renal dysfunction with regard to the AGE4-induced RAGE /JNK signaling pathway, which leads to renal cell apoptosis via the imbalance of mitochondrial function and ER stress in kidney damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235496PMC
http://dx.doi.org/10.3390/ijms22126530DOI Listing

Publication Analysis

Top Keywords

advanced glycation
8
mitochondrial dysfunction
8
endoplasmic reticulum
8
kidney cells
8
apoptosis markers
8
age4 induced
8
cell apoptosis
8
apoptosis
5
age4
5
methylglyoxal-derived advanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!