Extensive pig systems are gaining importance as quality production systems and as the standard for sustainable rural development and animal welfare. However, the effects of natural foods on epidemiology remain unknown. Herein, we assessed the presence of and the composition of the gut microbiota in pigs from both -free and high prevalence farms. In addition, risk factors associated with the presence of were investigated. The pathogen was found in 32.2% of animals and 83.3% of farms, showing large differences in prevalence between farms. Most isolates were serovars Typhimurium monophasic (79.3%) and Bovismorbificans (10.3%), and exhibited a multi-drug resistance profile (58.6%). Risk factor analysis identified feed composition, type/variety of vegetation available, and silos' cleaning/disinfection as the main factors associated with prevalence. Clear differences in the intestinal microbiota were found between -positive and -negative populations, showing the former with increasing and decreasing populations. Butyrate and propionate producers including , , Bacteroidaceae_uc, and were more abundant in the -negative group, whereas acetate producers like , or were more abundant in the -positive group. Overall, our results suggest that the presence of in free-range pigs is directly related to the natural vegetation accessible, determining the composition of the intestinal microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235412 | PMC |
http://dx.doi.org/10.3390/foods10061410 | DOI Listing |
Curr Rheumatol Rep
December 2024
Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada.
Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.
Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.
BMC Vet Res
December 2024
Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.
Background: The inclusion of sustainable protein sources in poultry feed has become essential for improving animal welfare in livestock production. Black soldier fly larvae are a promising solution due to their high protein content and sustainable production. However, most research has focused on fast-growing poultry breeds, while the effects on native breeds, such as the Bianca di Saluzzo, are less explored.
View Article and Find Full Text PDFMicrobiome
December 2024
Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, microbiota, and metabolites to explain the site-specific difference.
Methods: Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy controls) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed.
Gut Pathog
December 2024
Department of Gerontology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
Background: Sepsis represents the most prevalent infectious complication and the primary cause of mortality in myeloproliferative neoplasms (MPN). The risk of sepsis and the difficulty of treatment are significantly increased in MPN patients due to the need for immunomodulators and antibiotics.
Case Presentation: On June 9, 2023, a 69-year-old male was admitted to the hospital.
Nutr J
December 2024
Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
Background: Although emerging evidence suggests that indole derivatives, microbial metabolites of tryptophan, may improve cardiometabolic health, the effective metabolites remain unclear. Also, the gut microbiota that involved in producing indole derivatives are less studied. We identified microbial taxa that can predict serum concentrations of the key indole metabolite indole-3-propionic acid (IPA) at population level and investigated the associations of indole derivatives and IPA-predicting microbial genera with cardiometabolic risk markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!