Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to assess the ability of titanium Ti(IV) alkyloxy compounds supported by organic polymer polyvinyl chloride (PVC) to polymerize ethylene by feeding triethylaluminium (TEA) as a cocatalyst. Additionally, the impacts of the molar ratio of [Al]/[Ti] on the catalytic activities in ethylene's polymerization and of the comonomer through utilization of diverse quantities of comonomers on a similar or identical activity were studied. The optimal molar ratio of [Al]/[Ti] was 773:1, and the prepared catalyst had an initial activity of up to 2.3 kg PE/mol Ti. h. when the copolymer was incorporated with 64 mmol of 1-octene. The average molecular weight () of the copolymer produced with the catalysts was between 97 kg/mol and 326 kg/mol. A significant decrease in the was observed, and PDI broadened with increasing concentration of 1-hexene because of the comonomer's stronger chain transfer capacity. The quick deactivation of titanium butoxide Ti(OBu) on the polymers was found to be associated with increasing oxidation when supported by the catalyst. The presence of Ti(III) after reduction with the aluminum alkyls cleaves the carbon-chlorine bonds of the polymer, producing an inactive polymeric Ti(IV) complex. The results show that synergistic effects play an important role in enhancing the observed rate of reaction, as illustrated by evidence from scanning electron microscopy (SEM). The diffusion of cocatalysts within catalytic precursor particles may also explain the progression of cobweb structures in the polymer particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271721 | PMC |
http://dx.doi.org/10.3390/polym13132109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!