The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations.

Molecules

Departemt of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.

Published: June 2021

Nowadays, much attention is paid to issues such as ecology and sustainability. Many consumers choose "green cosmetics", which are environmentally friendly creams, makeup, and beauty products, hoping that they are not harmful to health and reduce pollution. Moreover, the repeated mini-lock downs during the COVID-19 pandemic have fueled the awareness that body beauty is linked to well-being, both external and internal. As a result, consumer preferences for makeup have declined, while those for skincare products have increased. Nutricosmetics, which combines the benefits derived from food supplementation with the advantages of cosmetic treatments to improve the beauty of our body, respond to the new market demands. Food chemistry and cosmetic chemistry come together to promote both inside and outside well-being. A nutricosmetic optimizes the intake of nutritional microelements to meet the needs of the skin and skin appendages, improving their conditions and delaying aging, thus helping to protect the skin from the aging action of environmental factors. Numerous studies in the literature show a significant correlation between the adequate intake of these supplements, improved skin quality (both aesthetic and histological), and the acceleration of wound-healing. This review revised the main foods and bioactive molecules used in nutricosmetic formulations, their cosmetic effects, and the analytical techniques that allow the dosage of the active ingredients in the food.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271805PMC
http://dx.doi.org/10.3390/molecules26133921DOI Listing

Publication Analysis

Top Keywords

challenge green
4
green cosmetics
4
cosmetics natural
4
food
4
natural food
4
food ingredients
4
cosmetic
4
ingredients cosmetic
4
cosmetic formulations
4
formulations nowadays
4

Similar Publications

The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy.

View Article and Find Full Text PDF

TFEB activator protects against ethanol toxicity-induced cardiac injury by restoring mitophagy and autophagic flux.

Biochim Biophys Acta Mol Basis Dis

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.

View Article and Find Full Text PDF

Accelerator neutron sources for BNCT: Current status and some pointers for future development.

Appl Radiat Isot

January 2025

Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan.

Recent decades have seen the development of accelerator neutron sources suitable for installation in a hospital setting. Numerous challenges have been faced and solved to deliver technology which continues to transform the field of BNCT. This paper begins by briefly reviewing the technologies which are currently, or soon will be, in clinical use.

View Article and Find Full Text PDF

Alloying effect modulated electronic structure of Mo-doped PdIn bimetallene nanoribbons for ambient electrosynthesis of urea.

Chem Commun (Camb)

January 2025

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.

Designing advanced catalysts for electrosynthesis of urea is of significance yet remains challenging. Herein, ultrathin two-dimensional Mo-doped PdIn bimetallene nanoribbons were synthesized a one-pot method. Material characterization and electrochemical study revealed that the alloying effect enabled electron transfer from In to Pd and provided dual metal sites with regulated electronic structure for the adsorption and activation of NO and CO, thus facilitating the generation of key active intermediates and promoting the C-N coupling reaction.

View Article and Find Full Text PDF

Bioinspired Photo-Thermal Catalytic System using Covalent Organic Framework-based Aerogel for Synchronous Seawater Desalination and H2O2 Production.

Angew Chem Int Ed Engl

January 2025

Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.

Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!