The strain behavior of SiC/Stycast 2850 FT composites under thermomechanical loading using a finite element analysis (FEA) was studied. These composites can serve as thermal stabilizers of high-temperature superconducting (HTS) tapes during limitation event in resistive superconducting fault current limiter (R-SCFCL) applications. For this purpose, the thermomechanical properties of four composite systems with different filler content were studied experimentally. The FEA was calculated using an ANSYS software and it delivered useful information about the strain distribution in the composite coating, as well as in particular layers of the modified HTS tapes. The tapes were subjected to bending over a 25 cm core, cooled in a liquid nitrogen (LN2) bath, and finally, quenched from this temperature to various temperatures up to 150 °C for a very short time, simulating real limitation conditions. The outputs from simulations were also correlated with the experiments. The most promising of all investigated systems was SB11-SiC20 composite in form of 100 µm thick coating, withstanding a temperature change from LN2 up to 120 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269596PMC
http://dx.doi.org/10.3390/ma14133579DOI Listing

Publication Analysis

Top Keywords

high-temperature superconducting
8
thermomechanical loading
8
hts tapes
8
experimental numerical
4
numerical analysis
4
analysis high-temperature
4
tapes
4
superconducting tapes
4
tapes modified
4
composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!