Advanced neuroimaging is one of the most important means that we have in the attempt to overcome time constraints and expand the use of intravenous thrombolysis (IVT). We assessed whether, and how, the prior use of advanced neuroimaging (AN), and more specifically CT/MR perfusion post-processed with RAPID software, regardless of time from symptoms onset, affected the outcomes of acute ischemic stroke (AIS) patients who received IVT. . We retrospectively evaluated consecutive AIS patients who received intravenous thrombolysis monotherapy (without endovascular reperfusion) during a six-year period. The study population was divided into two groups according to the neuroimaging protocol used prior to IVT administration in AIS patients (AN+ vs. AN-). Safety outcomes included any intracranial hemorrhage (ICH) and 3-month mortality. Effectiveness outcomes included door-to-needle time, neurological status (NIHSS-score) on discharge, and functional status at three months assessed by the modified Rankin Scale (mRS). . The rate of IVT monotherapy increased from ten patients per year ( = 29) in the AN- to fifteen patients per year ( = 47) in the AN+ group. Although the onset-to-treatment time was longer in the AN+ cohort, the two groups did not differ in door-to-needle time, discharge NIHSS-score, symptomatic ICH, any ICH, 3-month favorable functional outcome (mRS-scores of 0-1), 3-month functional independence (mRS-scores of 0-2), distribution of 3-month mRS-scores, or 3-month mortality. . Our pilot observational study showed that the incorporation of advanced neuroimaging in the acute stroke chain pathway in AIS patients increases the yield of IVT administration without affecting the effectiveness and safety of the treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268827PMC
http://dx.doi.org/10.3390/jcm10132819DOI Listing

Publication Analysis

Top Keywords

advanced neuroimaging
16
ais patients
16
intravenous thrombolysis
12
acute ischemic
8
ischemic stroke
8
patients received
8
ivt administration
8
outcomes included
8
ich 3-month
8
3-month mortality
8

Similar Publications

: Cerebral cavernous malformations (CCMs), particularly when located in the cerebellum, pose unique clinical challenges due to the risk of hemorrhage and proximity to critical neurovascular structures. Surgical resection is often necessary to prevent further neurological deterioration. This case report describes the management of a symptomatic cerebellar cavernoma, emphasizing the use of microsurgical techniques and long-term follow-up.

View Article and Find Full Text PDF

Advancements in neuroimaging, particularly diffusion magnetic resonance imaging (MRI) techniques and molecular imaging with positron emission tomography (PET), have significantly enhanced the early detection of biomarkers in neurodegenerative and neuro-ophthalmic disorders. These include Alzheimer's disease, Parkinson's disease, multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. This review highlights the transformative role of advanced diffusion MRI techniques-Neurite Orientation Dispersion and Density Imaging and Diffusion Kurtosis Imaging-in identifying subtle microstructural changes in the brain and visual pathways that precede clinical symptoms.

View Article and Find Full Text PDF

This systematic review of neuropsychological rehabilitation strategies for primary progressive aphasia will consider recent developments in cognitive neuroscience, especially neuroimaging techniques such as EEG and fMRI, to outline how these tools might be integrated into clinical practice to maximize treatment outcomes. A systematic search of peer-reviewed literature from the last decade was performed following the PRISMA guidelines across multiple databases. A total of 63 studies were included, guided by predefined inclusion and exclusion criteria, with a focus on cognitive and language rehabilitation in PPA, interventions guided by neuroimaging, and mechanisms of neuroplasticity.

View Article and Find Full Text PDF

This perspective paper explores the untapped potential of artificial intelligence (AI), particularly machine learning-based dimension reduction techniques in multimodal neuroimaging analysis of Long COVID fatigue. The complexity and high dimensionality of neuroimaging data from modalities such as positron emission tomography (PET) and magnetic resonance imaging (MRI) pose significant analytical challenges. Deep neural networks and other machine learning approaches offer powerful tools for managing this complexity and extracting meaningful patterns.

View Article and Find Full Text PDF

Schizophrenia, a highly complex psychiatric disorder, presents significant challenges in diagnosis and treatment due to its multifaceted neurobiological underpinnings. Recent advancements in functional magnetic resonance imaging (fMRI) and artificial intelligence (AI) have revolutionized the understanding and management of this condition. This manuscript explores how the integration of these technologies has unveiled key insights into schizophrenia's structural and functional neural anomalies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!