A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Elucidation of Mechanical, Physical, Chemical and Thermal Properties of Microbial Composite Films by Integrating Sodium Alginate with sp. | LitMetric

Materials are the foundation in human development for improving human standards of life. This research aimed to develop microbial composite films by integrating sodium alginate with . Sodium alginate film was fabricated as control. The microbial composite films were fabricated by integrating 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 g of into the sodium alginate. Evaluations were performed on the mechanical, physical, chemical and thermal properties of the films. It was found that films reinforced with significantly improved all the mentioned properties. Results show that 0.5 g microbial composite films had the highest tensile strength, breaking strain and toughness, which were 0.858 MPa, 87.406% and 0.045 MJ/m, respectively. The thickness of the film was 1.057 mm. White light opacity, black light opacity and brightness values were 13.65%, 40.55% and 8.19%, respectively. It also had the highest conductivity, which was 37 mV, while its water absorption ability was 300.93%. Furthermore, it had a higher melting point of 218.94 °C and higher decomposition temperature of 252.69 °C. SEM also showed that it had filled cross-sectional structure and smoother surface compared to the sodium alginate film. Additionally, FTIR showed that 0.5 g microbial composite films possessed more functional groups at 800 and 662 cm wavenumbers that referred to C-C, C-OH, C-H ring and side group vibrations and C-OH out-of-plane bending, respectively, which contributed to the stronger bonds in the microbial composite film. Initial conclusions depict the potential of to be used as reinforcing material in the development of microbial composite films, which also have the prospect to be used in electronic applications. This is due to the conductivity of the films increasing as cell mass increases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271853PMC
http://dx.doi.org/10.3390/polym13132103DOI Listing

Publication Analysis

Top Keywords

microbial composite
28
composite films
24
sodium alginate
20
integrating sodium
12
films
9
mechanical physical
8
physical chemical
8
chemical thermal
8
thermal properties
8
properties microbial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!