In this paper, we propose random beam-based non-orthogonal multiple access (NOMA) for low latency multiple-input single-output (MISO) broadcast channels, where there is a target signal-to-interference-plus-noise power ratio (SINR) for each user. In our system model, there is a multi-antenna transmitter with its own single antenna users, and the transmitter selects and serves some of them. For low latency, the transmitter exploits random beams, which can reduce the feedback overhead for the channel acquisition, and each beam can support more than a single user with NOMA. In our proposed random beam-based NOMA, each user feeds a selected beam index, the corresponding SINR, and the channel gain, so it feeds one more scalar value compared to the conventional random beamforming. By allocating the same powers across the beams, the transmitter independently selects NOMA users for each beam, so it can also reduce the computational complexity. We optimize our proposed scheme finding the optimal user grouping and the optimal power allocation. The numerical results show that our proposed scheme outperforms the conventional random beamforming by supporting more users for each beam.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271836 | PMC |
http://dx.doi.org/10.3390/s21134373 | DOI Listing |
Cancer Diagn Progn
May 2024
Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece.
Background/aim: Radiotherapy plays a key role in the treatment of gynecological cancer. Modern radiotherapy techniques with external beams (e-RT) are applied in a broad spectrum of gynecological cancer cases. However, high radiation doses, affecting normal tissue adjacent to cancer, represent the main disadvantage of e-RT regimens.
View Article and Find Full Text PDFPrompted by alleviating the random perturbation of underwater channel and enhancing the performance for the orbital angular momentum (OAM) -based underwater wireless optical communication (UWOC), the quasi-Airy Hypergeometric-Gaussian (QAHyGG) vortex beam is first proposed and demonstrated. Moreover, an underwater channel model is first modified for more accurate simulated results of the propagation property of various beams. Based on the modified model, the transmission and communication performance of three different OAM-carrying beams (the Gauss vortex (GV) beam, the Hypergeometric-Gaussian (HyGG) vortex beam, and the QAHyGG vortex beam) are comparatively studied.
View Article and Find Full Text PDFMaterials (Basel)
January 2022
College of Civil Engineering & Mechanics, Hebei Provincial Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures, Yanshan University, Qinhuangdao 066004, China.
The study of the bifurcation, random vibration, chaotic dynamics, and control of laminated composite beams are research hotspots. In this paper, the parametric random vibration of an axially moving laminated shape memory alloy (SMA) beam was investigated. In light of the Timoshenko beam theory and taking into consideration axial motion effects and axial forces, a random dynamic equation of laminated SMA beams was deduced.
View Article and Find Full Text PDFSensors (Basel)
June 2021
Department of Information and Communications Engineering, Gyeongsang National University, Tongyeong 53064, Korea.
In this paper, we propose random beam-based non-orthogonal multiple access (NOMA) for low latency multiple-input single-output (MISO) broadcast channels, where there is a target signal-to-interference-plus-noise power ratio (SINR) for each user. In our system model, there is a multi-antenna transmitter with its own single antenna users, and the transmitter selects and serves some of them. For low latency, the transmitter exploits random beams, which can reduce the feedback overhead for the channel acquisition, and each beam can support more than a single user with NOMA.
View Article and Find Full Text PDFPLoS One
November 2019
Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
Background And Purpose: In prostate cancer treatment with external beam radiation therapy (EBRT), prostate motion and internal changes in tissue distribution can lead to a decrease in plan quality. In most currently used planning methods, the uncertainties due to prostate motion are compensated by irradiating a larger treatment volume. However, this could cause underdosage of the treatment volume and overdosage of the organs at risk (OARs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!