Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Automated recognition of human facial expressions of pain and emotions is to a certain degree a solved problem, using approaches based on computer vision and machine learning. However, the application of such methods to horses has proven difficult. Major barriers are the lack of sufficiently large, annotated databases for horses and difficulties in obtaining correct classifications of pain because horses are non-verbal. This review describes our work to overcome these barriers, using two different approaches. One involves the use of a manual, but relatively objective, classification system for facial activity (Facial Action Coding System), where data are analyzed for pain expressions after coding using machine learning principles. We have devised tools that can aid manual labeling by identifying the faces and facial keypoints of horses. This approach provides promising results in the automated recognition of facial action units from images. The second approach, recurrent neural network end-to-end learning, requires less extraction of features and representations from the video but instead depends on large volumes of video data with ground truth. Our preliminary results suggest clearly that dynamics are important for pain recognition and show that combinations of recurrent neural networks can classify experimental pain in a small number of horses better than human raters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229776 | PMC |
http://dx.doi.org/10.3390/ani11061643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!