A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermal and Humidity Effect of Urban Green Spaces with Different Shapes: A Case Study of Shanghai, China. | LitMetric

Thermal and Humidity Effect of Urban Green Spaces with Different Shapes: A Case Study of Shanghai, China.

Int J Environ Res Public Health

Department of Geography & Planning, The University of Toledo, Toledo, OH 43606, USA.

Published: June 2021

Research shows that urban green spaces (UGSs) provide a number of positive effects, including enhancing human thermal comfort levels by decreasing air temperature (AT) and increasing relative humidity (RH). However, research on how the shape of an UGS influences these effects is yet to be explored. This paper explores the principles and features behind this. The AT and RH surrounding an UGS within a horizontal scale of 20 m was explored. Microclimate field measurements around 35 UGSs in Shanghai, China were carried out. The samples covered the most applied types of UGSs-punctiform, linear, and planar. Comparison spots were selected away from the sampled UGSs. The effects were studied by data collection and statistical analysis. The results indicate that the shape of the UGS had significant impact on the Temperature Humidity Index (THI). In the summer, the amplitude of THI variation decreases with the distance to UGS. For punctiform UGS, a larger total area and existence of water body results in a lower THI. A wider, linear UGS with the same orientation as the direction of the prevailing wind contributes more to decrease the surrounding THI. The total area of planar UGS is not critical. A higher landscape shape index of a planar UGS is the critical point to achieve a lower THI. The results can serve as a reference when planning and designing future UGSs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198378PMC
http://dx.doi.org/10.3390/ijerph18115941DOI Listing

Publication Analysis

Top Keywords

urban green
8
green spaces
8
shanghai china
8
ugs
8
shape ugs
8
total area
8
lower thi
8
planar ugs
8
ugs critical
8
thi
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!