Some grapevine rootstocks perform better than others during and after drought events, yet it is not clear how inherent and stress-induced differences in root morphology and anatomy along the length of fine roots are involved in these responses. Using a variety of growing conditions and plant materials, we observed significant differences in root diameter, specific root length (SRL) and root diameter distribution between two commonly used commercial grapevine rootstocks: Richter 110 (110R; drought resistant) and Millardet et de Grasset 101-14 (101-14Mgt; drought sensitive). The 110R consistently showed greater root diameters with smaller SRL and proportion of root length comprised of fine lateral roots. The 110R also exhibited significantly greater distance from tip to nearest lateral, longer white root length, and larger proportion of root length that is white under drought stress. Mapping of fine root cortical lacunae showed similar patterns between the rootstocks; mechanical failure of cortical cells was common in the maturation zone, limited near the root tip, and increased with drought stress for both genotypes; however, lacuna formed under wetter soil conditions in 110R. Results suggest that drought resistance in grapevine rootstocks is associated with thick, limitedly branched roots with a larger proportion of white-functional roots that tend to form lacuna under more mild water deficit, all of which likely favor continued resource acquisition at depth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227383 | PMC |
http://dx.doi.org/10.3390/plants10061121 | DOI Listing |
J Exp Bot
November 2024
Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy.
Grafting has been exploited since 7000 BC to enhance productivity, disease resistance, and adaptability of cultivated plants to stressful conditions especially in woody crops such as grapevine (Vitis spp.). In contrast, the application of sequence specific double-stranded RNAs (dsRNAs) to control fungal pathogens and insect pests has only been recently developed.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
This study investigates the impact of water stress on grapevines, specifically examining the role of rootstocks and aquaporins. Two experiments on potted plants were conducted in central Chile during the summer, under conditions of high water demand, involving various rootstock genotypes and combinations of Cabernet Sauvignon (CS) grafted onto rootstocks. Significant differences were observed among plants in terms of stem water potential, stomatal conductance, and growth rate.
View Article and Find Full Text PDFPlant Phenomics
December 2024
Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany.
Understanding root system architecture (RSA) is essential for improving crop resilience to climate change, yet assessing root systems of woody perennials under field conditions remains a challenge. This study introduces a pipeline that combines field excavation, in situ 3-dimensional digitization, and transformation of RSA data into an interoperable format to analyze and model the growth and water uptake of grapevine rootstock genotypes. Eight root systems of each of 3 grapevine rootstock genotypes ("101-14", "SO4", and "Richter 110") were excavated and digitized 3 and 6 months after planting.
View Article and Find Full Text PDFBMC Genomics
November 2024
Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China.
Plants (Basel)
October 2024
Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China.
Grafting is important for increasing the resistance of grapevines to environmental stress, improving fruit quality, and shortening the reproductive period. In this study, 'Cabernet Sauvignon' (CS) grafted on the resistant rootstock 140R (CS/140R), self-grafted grapevines of the resistant rootstock 140R (140R/140R), and self-grafted grapevines of CS (CS/CS) were subjected to high-throughput sequencing; small RNA (sRNA) libraries were constructed, and miRNAs responsive to the grafting process were identified. A total of 177 known miRNAs and 267 novel miRNAs were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!