High-Resolution Two-Dimensional Imaging of the 4H-SiC MOSFET Channel by Scanning Capacitance Microscopy.

Nanomaterials (Basel)

Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy.

Published: June 2021

In this paper, a two-dimensional (2D) planar scanning capacitance microscopy (SCM) method is used to visualize with a high spatial resolution the channel region of large-area 4H-SiC power MOSFETs and estimate the homogeneity of the channel length over the whole device perimeter. The method enabled visualizing the fluctuations of the channel geometry occurring under different processing conditions. Moreover, the impact of the ion implantation parameters on the channel could be elucidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234276PMC
http://dx.doi.org/10.3390/nano11061626DOI Listing

Publication Analysis

Top Keywords

scanning capacitance
8
capacitance microscopy
8
channel
5
high-resolution two-dimensional
4
two-dimensional imaging
4
imaging 4h-sic
4
4h-sic mosfet
4
mosfet channel
4
channel scanning
4
microscopy paper
4

Similar Publications

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced.

View Article and Find Full Text PDF

Hydrogen (H) is a viable alternative as a sustainable energy source, however, new highly efficient electrocatalysts for water splitting are still a research challenge. In this context, metal-organic frameworks (MOFs)-derived nanomaterials are prominent high-performance electrocatalysts for hydrogen production, especially in the oxygen evolution reaction (OER). Here, a new synthesis of two cerium oxide (CeO) electrocatalysts using Ce-succinates MOFs as templates is proposed.

View Article and Find Full Text PDF

Electrified Nanogaps under an AC Field: A Molecular Dynamics Study.

J Phys Chem C Nanomater Interfaces

December 2024

Physics Department, Durham University, Durham DH1 3LE, U.K.

The organization and dynamics of ions and water molecules at electrified solid-liquid interfaces are generally well understood under static fields, especially for macroscopic electrochemical systems. In contrast, studies involving alternating (AC) fields tend to be more challenging. In nanoscale systems, added complexity can arise from interfacial interactions and the need to consider ions and molecules explicitly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!