The paper presents results of investigations on the binderless nanostructured tungsten carbide (WC) cutting tools fabrication and performance. The scientific novelty includes the description of some regularities of the powder consolidation under electric current and the subsequent possibility to utilize them for practical use in the fabrication of cutting tools. The sintering process of WC nanopowder was performed with the electroconsolidation method, which is a modification of spark plasma sintering (SPS). Its advantages include low temperatures and short sintering time which allows retaining nanosize grains of ca. 70 nm, close to the original particle size of the starting powder. In respect to the application of the cutting tools, pure WC nanostructure resulted in a smaller cutting edge radius providing a higher quality of TiC/Fe machined surface. In the range of cutting speeds, = 15-40 m/min the durability of the inserts was 75% of that achieved by cubic boron nitride ones, and more than two times better than that of WC-Co cutting tools. In additional tests of machining 13CrMo4 material at an elevated cutting speed of = 100 m/min, binderless nWC inserts worked almost three times longer than WC-Co composites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234295 | PMC |
http://dx.doi.org/10.3390/ma14123432 | DOI Listing |
Pharmaceutics
December 2024
Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria.
The demand for developing novel antimicrobial drugs has increased due to the rapid appearance and global spread of antibiotic resistance. Antimicrobial peptides (AMPs) offer distinct advantages over traditional antibiotics, such as broad-range efficacy, a delayed evolution of resistance, and the capacity to enhance human immunity. AMPs are being developed as potential medicines, and current computational and experimental tools aim to facilitate their preclinical and clinical development.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland.
The machining of shape memory alloys, such as NiTi, presents challenges due to their specific physical, chemical, and mechanical properties. This study investigated the effect of the helix angle of milling tools-both uncoated and coated-on the cutting forces and the surface roughness of the milling process for a NiTi alloy. Experiments were conducted using the tools with and without coatings at various helix angles (20°, 30°, and 40°) and under different machining conditions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia, Medellín 050010, Colombia.
Small non-coding RNAs play a pivotal role in regulating various metabolic processes in both prokaryotic and eukaryotic organisms. However, knowledge about small RNAs (sRNAs) in () is scarce. This study aimed to use cutting-edge bioinformatics tools and a compendium of RNA-seq data to predict the potential coding of sRNAs that might be present in the genome of ATCC 27064.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of AI and Software, School of Computing, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea.
This review presents a detailed examination of the most recent advancements in positron emission tomography-computed tomography (PET-CT) multimodal imaging over the past five years. The fusion of PET and CT technologies has revolutionized medical imaging, offering unprecedented insights into both anatomical structure and functional processes. The analysis delves into key technological innovations, including advancements in image reconstruction, data-driven gating, and time-of-flight capabilities, highlighting their impact on enhancing diagnostic accuracy and clinical outcomes.
View Article and Find Full Text PDFBiomedicines
December 2024
Clinical Diagnosis and Investigation (Rognidan), National Institute of Ayurveda, Jaipur 302002, India.
Wound and injury healing processes are intricate and multifaceted, involving a sequence of events from coagulation to scar tissue formation. Effective wound management is crucial for achieving favorable clinical outcomes. Understanding the cellular and molecular mechanisms underlying wound healing, inflammation, and regeneration is essential for developing innovative therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!