Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235782 | PMC |
http://dx.doi.org/10.3390/plants10061247 | DOI Listing |
BMC Plant Biol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran.
Selenium (Se) plays a crucial role in ameliorating the negative impact of abiotic stress. The present study was performed to elucidate the efficacy of soil treatment of Se in reducing salt-induced stress in Carthamus tinctorius L. In this study, three different levels of NaSeO (0, 0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.
View Article and Find Full Text PDFSci Rep
December 2024
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
Brown rot fungi, the major decomposers in the boreal coniferous forests, cause a unique wood decay pattern but many aspects of brown rot decay mechanisms remain unclear. In this study, decayed wood samples were prepared by cultivation of the brown rot fungi Gloeophyllum trabeum and Coniophora puteana on Japanese coniferous wood of Cryptomeria japonica, and the cutting planes were prepared using broad ion beam (BIB) milling, which enables observation of intact wood, in addition to traditional microtome sections. Samples were observed using field-emission SEM revealing that areas inside the end walls of ray parenchyma cells were the first to be degraded.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Villányi Út 29-43, Budapest, Hungary.
Background: The use of vegetable grafting has proven to be effective not only in providing stress resistance but also improving fruit yields. There have been no studies on grafted vegetables' effects on the vascular systems, specifically xylem vessels. This study tested the effects of two groups of rootstocks, Solanum spp.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!