Collagen scaffolds, one of the most used biomaterials in corneal tissue engineering, are frequently crosslinked to improve mechanical properties, enzyme tolerance, and thermal stability. Crosslinkers such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) are compatible with tissues but provide low crosslinking density and reduced mechanical properties. Conversely, crosslinkers such as glutaraldehyde (GTA) can generate mechanically more robust scaffolds; however, they can also induce greater toxicity. Herein, we evaluated the effectivity of double-crosslinking with both EDC and GTA together with the capability of sodium metabisulfite (SM) and sodium borohydride (SB) to neutralize the toxicity and restore biocompatibility after crosslinking. The EDC-crosslinked collagen scaffolds were treated with different concentrations of GTA. To neutralize the free unreacted aldehyde groups, scaffolds were treated with SM or SB. The chemistry involved in these reactions together with the mechanical and functional properties of the collagen scaffolds was evaluated. The viability of the cells grown on the scaffolds was studied using different corneal cell types. The effect of each type of scaffold treatment on human monocyte differentiation was evaluated. One-way ANOVA was used for statistical analysis. The addition of GTA as a double-crosslinking agent significantly improved the mechanical properties and enzymatic stability of the EDC crosslinked collagen scaffold. GTA decreased cell biocompatibility but this effect was reversed by treatment with SB or SM. These agents did not affect the mechanical properties, enzymatic stability, or transparency of the double-crosslinked scaffold. Contact of monocytes with the different scaffolds did not trigger their differentiation into activated macrophages. Our results demonstrate that GTA improves the mechanical properties of EDC crosslinked scaffolds in a dose-dependent manner, and that subsequent treatment with SB or SM partially restores biocompatibility. This novel manufacturing approach would facilitate the translation of collagen-based artificial corneas to the clinical setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229326 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13060832 | DOI Listing |
Sci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFSci Rep
January 2025
LECIV - Civil Engineering Laboratory, UENF - State University of the North in Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, RJ, Brazil.
The correct choice of a stone aggregate for railway ballast is directly related to the stability, safety, efficiency, and maintenance costs of the track. The aggregate must meet several criteria to ensure it is the most appropriate material. Thus, the present study aimed to evaluate four distinct stones: two granites, a diabase, and a basalt, all mined in the eastern region of the state of São Paulo, Brazil, regarding their applicability as ballast.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester M13 9PL, UK. Electronic address:
Objective: To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.
Methods: Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group.
J Prosthet Dent
January 2025
Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH.
Statement Of Problem: Acrylic denture base resins are subject to colonization by oral and nonoral bacteria, contributing to the onset of denture stomatitis. However, how the addition of antimicrobial substances affects the mechanical and optical properties of additively manufactured denture base resin remains unclear.
Purpose: The purpose of this in vitro study was to investigate the surface roughness, color stainability, and flexural strength of antimicrobial-modified, additively manufactured polymethyl methacrylate (PMMA) denture base resin in tooth and gingiva colors.
Eur J Dent
January 2025
Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objective: The mechanical stimulation known as orthodontic mechanical force (OMF) causes biological reactions in orthodontic tooth movement (OTM). Heat shock protein-70 (HSP-70) needs pro-inflammatory cytokines to trigger bone resorption in OTM; nevertheless, heat shock protein-10 (HSP-10), a "Alarmin" cytokine, should control these pro-inflammatory cytokines to get the best alveolar bone remodeling (ABR). L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!