Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides.

Molecules

Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.

Published: June 2021

Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199760PMC
http://dx.doi.org/10.3390/molecules26113376DOI Listing

Publication Analysis

Top Keywords

self-assembly gels
8
diketopiperazine gels
4
gels horizons
4
horizons self-assembly
4
self-assembly cyclic
4
cyclic dipeptides
4
dipeptides cyclodipeptides
4
cyclodipeptides cdps
4
cdps 25-diketopiperazines
4
25-diketopiperazines dkps
4

Similar Publications

This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.

View Article and Find Full Text PDF

Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel.

Nat Commun

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.

The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

Polydiacetylene (PDA) Embedded Polymer-Based Network Structure for Biosensor Applications.

Gels

January 2025

Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Biosensors, which combine physical transducers with biorecognition elements, have seen significant advancement due to the heightened interest in rapid diagnostic technologies across a number of fields, including medical diagnostics, environmental monitoring, and food safety. In particular, polydiacetylene (PDA) is gaining attention as an ideal material for label-free colorimetric biosensor development due to its unique color-changing properties in response to external stimuli. PDA forms through the self-assembly of diacetylene monomers, with color change occurring as its conjugated backbone twists in response to stimuli such as temperature, pH, and chemical interactions.

View Article and Find Full Text PDF

Self-Assembled Peptide Hydrogels PPI45 and PPI47: Novel Drug Candidates for Infection Treatment.

Gels

January 2025

Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

, a prevalent zoonotic pathogen, poses a significant threat to skin wound infections. This study evaluates the bactericidal efficacy of self-assembled peptide hydrogels, PPI45 and PPI47, derived from the defensin-derived peptide PPI42, against ATCC43300. The high-level preparation of PPI45 and PPI47 was achieved with yields of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!