Starch is a major ingredient in rice, and the amylose content of starch significantly impacts rice quality. OsSS (starch synthase) is a gene family related to the synthesis of amylose and amylopectin, and 10 members have been reported. In the present study, a synteny analysis of a novel family member belonging to the OsSSIV subfamily that contained a starch synthase catalytic domain showed that three segmental duplications and multiple duplications were identified in rice and other species. Expression data showed that the OsSS gene family is involved in diverse expression patterns. The prediction of miRNA targets suggested that OsSS are possibly widely regulated by miRNA functions, with miR156s targeted to OsSSII-3, especially. Haplotype analysis exhibited the relationship between amylose content and diverse genotypes. These results give new insight and a theoretical basis for the improved amylose content and eating quality of rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227427 | PMC |
http://dx.doi.org/10.3390/plants10061154 | DOI Listing |
Plant Physiol
January 2025
Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland.
Plant chloroplasts store starch during the day, which acts as a source of carbohydrates and energy at night. Starch granule initiation relies on the elongation of malto-oligosaccharide primers. In Arabidopsis thaliana, PROTEIN TARGETING TO STARCH 2 (PTST2) and STARCH SYNTHASE 4 (SS4) are essential for the selective binding and elongation of malto-oligosaccharide primers, respectively, and very few granules are initiated in their absence.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. , a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China.
NnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China.
We investigated the effects of exogenous abscisic acid (ABA) on grain filling, starch accumulation, and endogenous hormones in maize (both the heat-tolerant maize variety Zhengdan 958 (ZD958) and the heat-sensitive variety Xianyu 335 (XY335)) under early post-anthesis high temperature stress by simulating high temperature stress for a period of 6 to 12 days post-anthesis in 2022 and 2023. There were three treatments: spraying water at ambient temperature as the control, spraying water at high temperature, and spraying ABA at high temperature. The results showed that early post-anthesis high temperature stress resulted in a significant reduction in grain weight and yield in maize, with XY335 showing a greater reduction than ZD958.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
Agastache rugosa, a perennial herb native to temperate and subtropical regions, shows remarkable adaptive strategies when exposed to varying light and nutrient conditions in tropical environments. Our study reveals new insights into the crosstalk mechanisms involving carbohydrate homeostasis, biomass allocation, and nutrient acquisition in A. rugosa under different environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!