MEMS-Based Electrochemical Seismometer with a Sensing Unit Integrating Four Electrodes.

Micromachines (Basel)

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

Published: June 2021

This paper presents a new process to fabricate a sensing unit of electrochemical seismometers using only one silicon-glass-silicon bonded wafer. By integrating four electrodes on one silicon-glass-silicon bonded wafer, the consistency of the developed sensing unit was greatly improved, benefiting from the high alignment accuracy. Parameter designs and simulations were carried out based on this sensing unit, which indicated that the sensitivities of the developed electrochemical seismometer decreased with the decrease in the number of flow holes in the sensing unit, and the initial stabilization time decreased gradually with the decrease in the thickness of the glass layer. Based on experimental results of four devices, the peak sensitivity was quantified as 5345.45 ± 43.78 V/(m/s) at 2 Hz, which proved high consistency of the fabricated electrochemical seismometer. In terms of the responses to random ground motions, high consistencies between the developed electrochemical seismometer and the commercial counterpart of CME6011 (R-sensors, Moscow, Russia) were found, where the developed electrochemical seismometer produced comparable noise levels to those of CME6011. These results validated the performance of the device and it may function as an effective tool for a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232786PMC
http://dx.doi.org/10.3390/mi12060699DOI Listing

Publication Analysis

Top Keywords

electrochemical seismometer
20
sensing unit
20
developed electrochemical
12
integrating electrodes
8
silicon-glass-silicon bonded
8
bonded wafer
8
seismometer
5
sensing
5
unit
5
electrochemical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!