Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers.

Cancers (Basel)

Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH 44106, USA.

Published: June 2021

Photodynamic therapy (PDT) is a well-documented therapy that has emerged as an effective treatment modality of cancers. PDT utilizes harmless light to activate non- or minimally toxic photosensitizers to generate cytotoxic species for malignant cell eradication. Compared with conventional chemotherapy and radiotherapy, PDT is appealing by virtue of the minimal invasiveness, its safety, as well as its selectivity, and the fact that it can induce an immune response. Although local illumination of the cancer lesions renders intrinsic selectivity of PDT, most photosensitizers used in PDT do not display significant tumor tissue selectivity. There is a need for targeted delivery of photosensitizers. The molecular identification of cancer antigens has opened new possibilities for the development of effective targeted therapy for cancer patients. This review provides a brief overview of recent achievements of targeted delivery of photosensitizers to cancer cells by targeting well-established cancer biomarkers. Overall, targeted PDT offers enhanced intracellular accumulation of the photosensitizer, leading to improved PDT efficacy and reduced toxicity to normal tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232794PMC
http://dx.doi.org/10.3390/cancers13122992DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
cancer biomarkers
8
targeted delivery
8
delivery photosensitizers
8
pdt
7
cancer
6
therapy targeting
4
targeting cancer
4
biomarkers treatment
4
treatment cancers
4

Similar Publications

Bifunctional cascaded single-atom nanozymes for enhanced photodynamic immunotherapy through dual-depressing PD-L1 and regulating hypoxia.

Biomaterials

January 2025

Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China. Electronic address:

As a promising anti-tumor modality, photodynamic immunotherapy (PDIT) has been applied for the treatment of many solid tumors. However, tumor hypoxic condition and immunosuppressive microenvironment severely limit the treatment outcome of PDIT. Here, we have designed a hairpin tetrahedral DNA nanostructure (H-TDN)-modified bifunctional cascaded Pt single-atom nanozyme (PCFP@H-TDN) with encapsulation of the photosensitizer.

View Article and Find Full Text PDF

A self-aggregated thermally activated delayed fluorescence nanoprobe for HClO imaging and activatable photodynamic therapy.

Talanta

January 2025

Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China. Electronic address:

Hypochlorous acid (HClO/ClO) is a common ROS that exhibits elevated activity levels in cancer cells. In this study, an ClO-triggered TADF probe, PTZ-MNI, was designed based on a naphthalimide core. PTZ-MNI self-assemble in aqueous environments, exhibiting significantly enhanced fluorescence that demonstrated typical aggregation-induced delayed fluorescence (AIDF) characteristics.

View Article and Find Full Text PDF

Alveolar echinococcosis (AE) is a serious parasitic infectious disease that is highly invasive and destructive to the liver and has a high mortality rate. However, currently, there is no effective targeted imaging and treatment method for the precise detection and therapy of AE. We proposed a new two-step targeting strategy (TSTS) for AE based on poly(lactic--glycolic acid) (PLGA).

View Article and Find Full Text PDF

Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.

View Article and Find Full Text PDF

Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!