In this paper, we describe and present a , a tool that allows the determination of the electromechanical, dielectric, and elastic coefficients in polarised ferroelectric ceramic discs (piezoceramics) in the linear range, including all of the losses when the piezoceramics are vibrating in radial mode. There is no evidence in the recent scientific literature of any automatic system conceived and implemented as a based on an iterative algorithm issued as an alternative to solve the limitations of the ANSI IEEE 176 standard for the characterisation of piezoelectric coefficients of thin discs in resonant mode. The characterisation of these coefficients is needed for the design of ultrasonic sensors and generators. In 1995, two of the authors of this work, together with other authors, published an iterative procedure that allowed for the automatic determination of the complex constants for lossy piezoelectric materials in radial mode. As described in this work, the procedures involved in using a have been improved: the response time for the characterisation of a piezoelectric sample is shorter (approximately 5 s); the accuracy in measurement and, therefore, in the estimates of the coefficients has been increased; the calculation speed has been increased; an intuitive, simple, and friendly user interface has been designed, and tools have been provided for exporting and inspecting the measured and processed data. No has been found in the recent scientific literature that has improved on the iterative procedure designed in 1995. This is based on the measurement of a unique magnitude, the electrical admittance () in the frequency range of interest. After measuring the electrical admittance, estimates of the set of piezoelectric coefficients of the device are obtained. The programming language used in the construction of the is LabVIEW 2019.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232585 | PMC |
http://dx.doi.org/10.3390/s21124107 | DOI Listing |
Nat Nanotechnol
January 2025
Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, China.
Skyrmions can form regular arrangements, so-called skyrmion crystals (SkXs). A mode with multiple wavevectors q then describes the arrangement. While magnetic SkXs, which can emerge in the presence of Dzyaloshinskii-Moriya interaction, are well established, polar skyrmion lattices are still elusive.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.
Electrostriction is an important electro-mechanical property in poly (vinylidene fluoride) (PVDF) films, which describes the proportional relation between the electro-stimulated deformation and the square of the electric field. Generally, traditional methods to improve the electrostriction of PVDF either sacrifice other crystalline-related key properties or only influence minimal regions around the surface. Here, we design a unique electret structure to fully exploit the benefits of internal crystal in PVDF films.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions.
View Article and Find Full Text PDFNanoscale
January 2025
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Chalcogenide perovskites are gaining prominence as earth-abundant and non-toxic solar absorber materials, crystallizing in a distorted perovskite structure. Among these, BaZrS has attracted the most attention due to its optimal bandgap and its ability to be synthesized at relatively low temperatures. BaZrS exhibits a high light absorption coefficient, excellent stability under exposure to air, moisture, and heat, and is composed of earth-abundant elements.
View Article and Find Full Text PDFACS Nano
January 2025
School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia.
Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!