Recently, it has been a feasible approach to build an antenna, in view of the potential advantages they offer. One of the recent trends in dielectric resonator antenna research is the use of compound and hybrid structures. Several considerable investigations have been already underway showing quite interesting and significant features in bandwidth, gain, and generation of circular polarization. A critical review on a journey of circularly polarized hybrid dielectric resonator antennas is presented in this article. A general discussion of circular polarization and DR antennas are provided at the forefront. Evolution, significant challenges, and future aspects with new ideas in designing hybrid dielectric resonator antennas are indicated at the end of the review. State-of-the-art advances and associated design challenges of circularly polarized hybrid DR antennas and related empirical formulas used to find resonance frequency of different hybrid modes produced are discussed in this paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232192 | PMC |
http://dx.doi.org/10.3390/s21124100 | DOI Listing |
Nano Lett
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFSci Rep
January 2025
MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
We integrate monolayer TMDCs into silicon-on-insulation (SOI) waveguides and dielectric-loaded surface plasmon polariton (DLSPP) waveguides to enhance nonlinear parameters (γ) of silicon-based waveguides. By optimizing the waveguide geometry, we have achieved significantly improved γ. In MoSe-on-SOI and MoSe-in-DLSPP waveguide with optimized geometry, the maximum γ at the excitonic resonant peak (λ) is 5001.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France.
The world of nanoscales in fluidics is the frontier where the continuum of fluid mechanics meets the atomic, and even quantum, nature of matter. While water dynamics remains largely classical under extreme confinement, several experiments have recently reported coupling between water transport and the electronic degrees of freedom of the confining materials. This avenue prompts us to reconsider nanoscale hydrodynamic flows under the perspective of interacting excitations, akin to condensed matter frameworks.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
In recent years, research on chiral bound states in the continuum (BIC) has surged, leading to the development of various chiral metasurfaces with narrow bandwidths by breaking of in-plane and out-of-plane symmetries. However, the ability to dynamically tune the working band remains relatively unexplored, which is valuable for chiral sensing applications. Optical phase-change materials, with tunable dielectric constants and switchable properties during phase transition, offer the potential for dynamic control of optical metasurfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!