Polymer composites are being considered for numerous thermal applications because of their inherent benefits, such as light weight, corrosion resistance, and reduced cost. In this work, the microstructural, thermal, and mechanical properties of a 3D printed polymer composite with high thermal conductivity are examined using multiple characterization techniques. Infrared spectroscopy and X-ray diffraction reveal that the composite contains a polyphenylene sulfide matrix with graphitic fillers, which is responsible for the high thermal conductivity. Furthermore, differential scanning calorimetry determines that the glass transition and melting point of the composite are 87.6 °C and 285.6 °C, respectively. Thermogravimetric analysis reveals that the composite is thermally stable up to ~400 °C. Creep tests are performed at different isotherms to evaluate the long-term performance of the composite. The creep result indicates that the composite can maintain mechanical integrity when used below its glass transition temperature. Nanoindentation tests reveal that modulus and hardness of the composite is not significantly influenced by heating or creep conditions. These findings indicate that the composite is potentially suitable for heat exchanger applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232206PMC
http://dx.doi.org/10.3390/polym13121970DOI Listing

Publication Analysis

Top Keywords

composite
9
thermal mechanical
8
polymer composite
8
heat exchanger
8
exchanger applications
8
high thermal
8
thermal conductivity
8
glass transition
8
structural thermal
4
mechanical characterization
4

Similar Publications

Objectives: To incorporate a longitudinal palliative care curriculum into obstetrics and gynecology (Ob-Gyn) residency that could become standardized to ensure competencies in providing end of life (EOL) care.

Methods: This was a prospective cohort study conducted among 23 Ob-Gyn residents at a tertiary training hospital from 2021 to 2022. A curriculum intervention was provided via lecture and simulation.

View Article and Find Full Text PDF

Lipoprotein(a) Atherosclerotic Cardiovascular Disease Risk Score Development and Prediction in Primary Prevention From Real-World Data.

Circ Genom Precis Med

January 2025

Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).

Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).

Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.

View Article and Find Full Text PDF

The Chinese proverb "One mountain, one flavor" reflects that raw pu-erh tea (RPT) from different tea-producing mountains (TPMs) possesses distinct flavor profiles. However, limited research has been conducted on the chemical composition underlying distinct flavor profiles. In this study, sensory evaluation and main phytochemical compositions revealed diverse aromas of RPTs from 26 TPMs.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!