Polylactic Acid (PLA) filaments impregnated with ethanolic mango leaves extract (MLE) with pharmacological properties were obtained by supercritical impregnation. The effects of pressure, temperature and amount of extract on the response variables, i.e., swelling, extract loading and bioactivity of the PLA filaments, were determined. The analysis of the filaments biocapacities revealed that impregnated PLA filaments showed 11.07% antidenaturant capacity and 88.13% antioxidant activity, which after a 9-day incubation shifted to 30.10% and 9.90%, respectively. Subsequently, the same tests were conducted on printed samples. Before their incubation, the printed samples showed 79.09% antioxidant activity and no antidenaturant capacity was detected. However, after their incubation, the antioxidant activity went down to only 2.50%, while the antidenaturant capacity raised up to 23.50%. The persistence of the bioactive properties after printing opens the possibility of using the functionalized PLA filaments as the feed for a three-dimensional (3D) printer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271598 | PMC |
http://dx.doi.org/10.3390/polym13132125 | DOI Listing |
Phys Eng Sci Med
December 2024
Department of Medical Imaging and Nuclear Medicine, Gosford Hospital, Building K3, Gosford, NSW, Australia.
Quantitative accuracy and constancy of Siemens xSPECT Bone quantitative reconstruction algorithm (xBone) can be monitored using activity-filled hollow spheres, which could be 3D printed (3DP) to increase accessibility to phantoms. One concern is that 3D prints can have air gaps in the walls which may pose issues for attenuation correction and xBone tissue zone mapping. This study assessed the feasibility of using 3DP spheres (3DP-S) with materials PLA, PETG and Resin as substitutes for commercial hollow spheres (C-S).
View Article and Find Full Text PDFMikrochim Acta
December 2024
Chemistry Institute, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil.
Babassu (Atallea sp.), a native palm tree from South America's Amazon produces bio-oil and biochar with significant potential for industrial applications. Babassu oil as a bio-based plasticizer is reported here for the first time to replace petrochemical alternatives in the production of conductive filaments for additive manufacturing purposes.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Materials Science and Technology Center (CCTM), Nuclear, and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo, São Paulo, Brazil.
This study describes a 3D fused deposition modeling (FDM) printing process using a graphene-impregnated polylactic acid (G-PLA) filament to create a new type of rigid, plastic, nonconductive, and anticorrosion layer. Therefore, the possibility of 3D printing a plastic layer using FDM methods is demonstrated herein. A commercial magnet such as N35 NdFeB can be used to produce an efficient shielding film by additive manufacturing.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Łódź, Poland.
Sci Rep
December 2024
Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Guilin University of Aerospace Technology, Guilin, 541004, China.
This paper purposed to prepare poly (lactic acid)/continuous cotton thread (PLA /CCT) filaments by using prepreg method, and investigated the properties of PLA/CCT filament and their 3D printed composites. Firstly, a prepreg device was home-made to immerse CCT with PLA melts. The effects of the dragging speed and tensioning equipment on the quality of PLA/CCT filament was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!