AI Article Synopsis

  • The enhanced permeability and retention effect of nanoparticles is limited, prompting a shift towards active targeted drug delivery systems for more effective cancer therapy.
  • Development of polymer PLGA nanoparticles, loaded with the fluorescent dye Rose Bengal and tagged with HER2-targeting affibody, enables selective binding to HER2-overexpressing cancer cells.
  • The nanoparticles show dual functionality, producing reactive oxygen species upon green light irradiation to induce cancer cell death, potentially addressing challenges in cancer diagnostics and treatment.

Article Abstract

The effect of enhanced permeability and retention is often not sufficient for highly effective cancer therapy with nanoparticles, and the development of active targeted drug delivery systems based on nanoparticles is probably the main direction of modern cancer medicine. To meet the challenge, we developed polymer PLGA nanoparticles loaded with fluorescent photosensitive xanthene dye, Rose Bengal, and decorated with HER2-recognizing artificial scaffold protein, affibody Z. The obtained 170 nm PLGA nanoparticles possess both fluorescent and photosensitive properties. Namely, under irradiation with the green light of 540 nm nanoparticles, they produced reactive oxygen species leading to cancer cell death. The chemical conjugation of PLGA with anti-HER2 affibody resulted in the selective binding of nanoparticles only to HER2-overexpressing cancer cells. HER2 is a receptor tyrosine kinase that belongs to the EGFR/ERbB family and is overexpressed in 30% of breast cancers, thus serving as a clinically relevant oncomarker. However, the standard targeting molecules such as full-size antibodies possess serious drawbacks, such as high immunogenicity and the need for mammalian cell production. We believe that the developed affibody-decorated targeted photosensitive PLGA nanoparticles will provide new solutions for ongoing problems in cancer diagnostics and treatment, as well in cancer theranostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271481PMC
http://dx.doi.org/10.3390/molecules26133955DOI Listing

Publication Analysis

Top Keywords

plga nanoparticles
16
anti-her2 affibody
8
cell death
8
fluorescent photosensitive
8
nanoparticles
7
cancer
6
plga
5
nanoparticles decorated
4
decorated anti-her2
4
affibody targeted
4

Similar Publications

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

FAP-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy.

Int J Pharm

January 2025

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China. Electronic address:

Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core.

View Article and Find Full Text PDF

Background/aims: Gastric cancer (GC) is a significant global health issue with high incidence rates and poor prognoses, ranking among the top prevalent cancers worldwide. Due to undesirable side effects and drug resistance, there is a pressing need for the development of novel therapeutic strategies. Understanding the interconnectedness of the JAK2/STAT3/mTOR/PI3K pathway in tumorigenesis and the role of Astaxanthin (ASX), a red ketocarotenoid member of xanthophylls and potent antioxidant and anti-tumor activity, can be effective for cancer treatments.

View Article and Find Full Text PDF

Gemcitabine (GEM), a chemotherapeutic agent, is widely utilized in treating various neoplasm conditions, such as pancreatic, lung, breast, and ovarian cancers. However, its therapeutic effectiveness is often hindered by its hydrophilic nature, short half-life and susceptibility to enzymatic degradation. To address these limitations, in this research, five new prodrugs of GEM were synthesized by conjugating its N-4 amino group with five different acids [4-decenoic acid (4Dec), lipoic acid (Lipo), lauric acid (Laur), 5-benzyl N-(tert-butoxycarbonyl)- L-glutamate (Glu), and decanoic acid (Dec)].

View Article and Find Full Text PDF

Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration.

Pharmaceutics

November 2024

Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China.

Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!