Research on T-configuration aluminum constructions effectively decreases fuel consumption, increases strength, and develops aerial structures. In this research, the effects of friction stir welding (FSW) tool offset (TO) on Al-Mg-Si alloy mixing and bonding in T-configurations is studied. The process is simulated by the computational fluid dynamic (CFD) technique to better understand the material mixing flow and the bonding between the skin and flange during FSW. According to the results, the best material flow can be only achieved at an appropriate TO. The appropriate TO generates enough material to fill the joint line and results in formation of the highest participation of the flange in the stir zone (SZ) area. The results show that, in the T-configuration, FSW joints provide raw materials from the retreating side (RS) of the flange that play a primary role in producing a sound mixing flow. The selected parameters were related to the geometric limitations of the raw sheets considered in this study. The failure point of all tensile samples was located on the flange. Surface tunneling is the primary defect in these joints, which is produced at high TOs. Among the analyzed cases, the most robust joint was made at +0.2 mm TO on the advancing side (AS), resulting in more than 60% strength of the base aluminum alloy being retained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269728PMC
http://dx.doi.org/10.3390/ma14133604DOI Listing

Publication Analysis

Top Keywords

friction stir
8
stir welding
8
tool offset
8
al-mg-si alloy
8
mixing flow
8
analysis friction
4
welding tool
4
offset bonding
4
bonding properties
4
properties al-mg-si
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!