A novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. While the world is striving for a treatment modality against SARS-CoV-2, our understanding about the virus entry mechanisms may help to design entry inhibitors, which may help to limit the virus spreading. Owing to the importance of cellular ACE2 and heparan sulfate in SARS-CoV-2 entry, we aimed to evaluate the efficacy of cationic G1 and G2 peptides in virus entry inhibition. In silico binding affinity studies revealed possible binding sites of G1 and G2 peptides on HS and ACE2, which are required for the spike-HS and spike-ACE2 interactions. Prophylactic treatment of G1 and G2 peptide was also proved to decrease the cell surface HS, an essential virus entry receptor. With these two mechanisms we confirm the possible use of cationic peptides to inhibit the entry of SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308704 | PMC |
http://dx.doi.org/10.3390/pathogens10070803 | DOI Listing |
Molecules
January 2025
College of Life Science, Liaoning Normal University, Dalian 116081, China.
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
The distinctive clinicopathologic characteristics of OLP indicated that both microbial dysbiosis and neurogenic inflammation may be jointly involved in its progression, and transient receptor potential vanilloid receptor-1 (TRPV1) may be a crucial element. The purpose of this study was to explore how TRPV1 mediated -induced inflammation. Meanwhile, we aimed to unravel how IL-36γ dysregulated the barrier function in oral keratinocytes.
View Article and Find Full Text PDFMicroorganisms
January 2025
CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic.
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections.
View Article and Find Full Text PDFBiomedicines
January 2025
Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia.
Background/objectives: The role of α-synuclein (α-syn) pathology in Parkinson's disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides (CARPs) are an emerging class of molecule with multiple neuroprotective mechanisms of action, including protein stabilisation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!